
Introduction to Relational
Databases

Peter Bazeley
BIPG 540/740

Overview
 DBMS vs. Flat Files
 The Relational Model
 Relations
 Schemas
 Primary Keys
 Relationships
 Relationships Examples
 Derived Attributes, Views

DBMS
 Database Management Systems (DBMSs) are

software systems that facilitate management and
access of data

 A relational DBMS (RDBMS) is database system that
uses the relational data model

 Other data models include hierarchical, network,
object-oriented, and object-relational

 The relational model is the most popular

DBMS vs. Flat Files
 Why use a DBMS rather than storing

everything in flat files?

 Ultimately, it depends on the task at a hand

 DBMSs take care of data storage and access
details

 Is this useful or an inconvenience?

Flat Files: Cons
 Must write a custom program every time a new

search is needed
 Searches are limited by structure of files
 Alternatively, could write code library of access routines, but

this is more work and flexibility must be considered

 Need to consider concurrent access details
 Multiple people editing records
 Accessing a record that is being deleted by another person

 Need to consider access/security issues
 Who can access which parts of the database
 How will access be managed?

DBMS: Pros
 Data storage/access abstraction

 Don’t have to worry about how/where data stored
 Implementation of low-level access routines not required

 Efficient searching/updating
 DBMSs use sophisticated, semi-optimized access routines
 Further optimization available

 Data integrity check mechanisms available
 e.g. to avoid adding a record that already exists
 Or to make sure data entered conforms to certain

specifications

DBMS: Pros Cont’d
 Access/security management built-in

 Concurrent access details taken care of

 Reduced application development time

 Convenient, powerful stand-alone access tool

 Uniform, consistent access methods

DBMS: Cons
 In certain cases, data access can be slower

 It’s faster to read from disk than a DBMS
 Highly specialized searches may be completed more quickly

by custom programs
 Data manipulation facilities may be inconvenient

 May need to retrieve data in a way not supported
 e.g. complex text manipulation
 Operation that works on multiple rows

 Still limited by structure of database
 Must conform data/tasks to database structure
 How long will it take to conform your data for loading?

Flat Files vs. DBMS

 Depends on task
 How long will database be used?
 Who needs to be able to access data, and how?
 How complex is data?
 How complex are searches?

 Both types of databases will require sufficient
planning for future needs

The Relational Model
 The central concept in the relational model is

the relation

 Think of a relation as a collection of “things”
 collection of students
 collection of genes

 These “things” are called records or tuples

The Relation
 Each relation has one or more characteristics,

known as attributes or fields

 Student: address, GPA, phone number, …
 Gene: sequence, function, chromosome, …

 Each record in a relation has these attributes
 They have different values, of course
 Attribute values can be missing/empty (more on

this in later lectures)

Schemas
 A description of a relation is called a schema

 Schemas consist of:

 The name of the relation

 A list of the attributes in a relation

 The type or domain of each attribute
 Number (integer, real, etc.)
 Character (single character, string of characters, etc.)
 Logical (True/False)

Student Relation Schema
 Relation: Student

 Attributes:
 Name - character string
 Age - integer
 Phone number - character string
 G.P.A. - real number

Gene Relation Schema
 Relation: Gene

 Attributes:
 Name - character string
 Sequence - character string
 Function - character string
 Chromosome - integer

Schema Diagrams
 Often you will see schemas in box diagrams:

 Although the format may differ
 More on “Gene ID” later

Relations and Tables
 An instance of a relation is table

 Tables have:
 Rows

 each row is a record
 student 1, student 2, etc.

 Columns
 each column is an attribute
 name, phone number, age, G.P.A., etc.

 Think of a relation as the abstract idea and a
table as an actual set of records

Student Table

Name Age Phone Number GPA
John Smith 19 419-383-2879 3.4

Sarah Jones 21 419-383-3120 3.1
Tim Roberts 20 419-383-4560 2.5

Gene Table

Name Sequence Function Chromosome

abc ATGGCCAA… oxidize fat 2

efg TGGACTTA.. transport Ca2+ 13

hij CTAGATCA… structural 6

Primary Keys
 Each record must be uniquely identifiable

 Otherwise there is no way to differentiate
records

 A set of one or more attributes that uniquely
identifies a record is called a candidate key
or just key

 If more than one key exists, one of these is
chosen, and is called the primary key

Primary Keys
 Usually, primary keys are created by adding a

new attribute, which has type “serial”
 A sequential set of unique numbers
 1, 2, 3, …

 Alternatively, the primary key can be a set of
existing attributes:
 (name, age, phone number)
 As long as the record is uniquely identified, any

combination of attributes is acceptable

Student Table Primary Key

Student ID Name Age Phone Number GPA

101 John Smith 19 419-383-2879 3.4

312 Sarah Jones 21 419-383-3120 3.1

057 Tim Roberts 20 419-383-4560 2.5

Gene Table Primary Key

Gene ID Name Sequence Function Chromosome
1 abc ATGGCCAA… oxidize fat 2
2 efg TGGACTTA.. transport Ca2+ 13
3 hij CTAGATCA… structural 6

Gene Table Schema
 In schema diagrams, the primary key is

usually annotated

Multiple Relations
 More often than not your database will

have multiple relations
 Student, college, residence hall, course, …
 Gene, chromosome, genome, organism, …

 The utility of the relational model is
being able to link these various relations

Multiple Relations
 What do I mean by “linking relations”?

=> Relationships

 Students
 Belong to a college
 Live in a residence hall
 Enroll in several courses

 Genes
 Are located in a chromosome
 Exist in an organism

Relationships
 Relationships can be:

 One-to-one
 One bed per student
 One genome per organism
 These could be in the same relation

 One-to-many
 One college for many students
 One chromosome for many genes

 Many-to-many
 Many students take many courses
 Many genes exist in many organisms

Relationships Example
 Students in a College

Students in a College
 How do we model this relationship?

 The relations must be linked by a common
attribute

 They likely don’t have any naturally common
attributes
 Students and Colleges
 Apple and Oranges

Students in a College
 To model this relationship, we’ll put one or

more attributes from one relation into the
other relation
 So, we are adding another attribute(s) to one of

the relations
 Which attribute(s)?

 We need to be able to uniquely associate the
2 relations
 We’ll use primary keys
 But, do we use the student’s PK or the college’s

PK?

Students in a College
 Well, what kind of a relationship is this?

 One-to-many
 One College for many Students

 Two options:
 Add the student’s PK to the college relation
 Add the college’s PK to the student relation

Students in a College
 What if we store each student in the college

table?

. .

. .

. .

College
ID

Name Building Location Office Phone
Number

Student
ID

5 Engineering Main Street 419-383-1234 1

5 Engineering Main Street 419-383-1234 2

5 Engineering Main Street 419-383-1234 3

Students in a College
 Since there are many students per college, it

would be cumbersome and redundant to
store each student in the college table

 Instead, we’ll store the college’s PK in the
student table

Student ID Name Age Phone Number GPA College ID

1 John Smith 19 419-383-2879 3.4 5

2 Sarah Jones 21 419-383-3120 3.1 5

3 Tim Roberts 20 419-383-4560 2.5 5

Students in a College
 Storing the College ID in the Student

table is much less redundant

 As an aside, redundancy can be prone
to errors
 Typing errors during data entry
 Mistyped entries would be interpreted as

distinct

Student-College Schema
 To model relationships, the primary key

of one relation is an attribute in another
relation

Foreign Keys
 A primary key from one relation stored

in another is a foreign key

Relationship Schema Symbols
 What about THAT

 This symbol can be used to indicate the type
of relationship
 In this case, many-to-one
 Think of the 3 legs on the left end as “many” vs.

the one leg on the other end, “one”
 Accordingly, one-to-one and many-to-many

symbols can also be used:

Relational Database
 A relational database is a collection of one or

more relations

 Each relation is linked to the others by
primary keys, directly or indirectly

 Indirectly?
 student => college => college faculty member
 gene => chromosome => genome

Derived vs. Stored Attributes
 So far all of the attributes we have seen

are stored directly in the database

 Can also derive attributes from others
stored in database
 Calculate age from D.O.B.
 Compile full name from first and last name

attributes

Derived Attributes
 Age from D.O.B.

 Find absolute DOB age in years
 Find today’s absolute age in years
 Subtract the DOB age from today’s age and divide

by 365.25 (accounting for leap years)

 Average gene length for a chromosome
 Sum gene lengths for chromosome
 Divide by total number of genes on chromosome

Views
 Views are derived relations

 A collection of attributes can be derived from
one or more relations and “stored” in a view

 A view is thereafter accessible, just as you
would access any other table

 Updating views may or may not be allowed,
depending on the database system you are
using

Views
 Why use a view?

 Views are persistent (until database is
shutdown)
 So if you are constantly creating certain derived

attributes, a view would be useful
 Alternative would be to store redundant

information, which isn’t recommended
 Added consistency task
 Waste of space
 Views are more flexible

Reference

 Database Management Systems, Third
Edition, by Ramakrishnan and Gehrke

What Now?

 We have a few in-class challenge
problems

 Any questions before then?

