Basics of Markov chains

Samuel S. Shepard

Outline

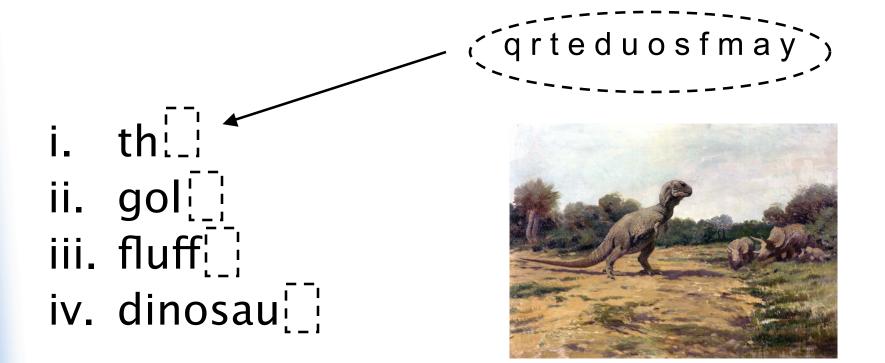
- Discuss basic Markov models.
- Discuss a few applications.

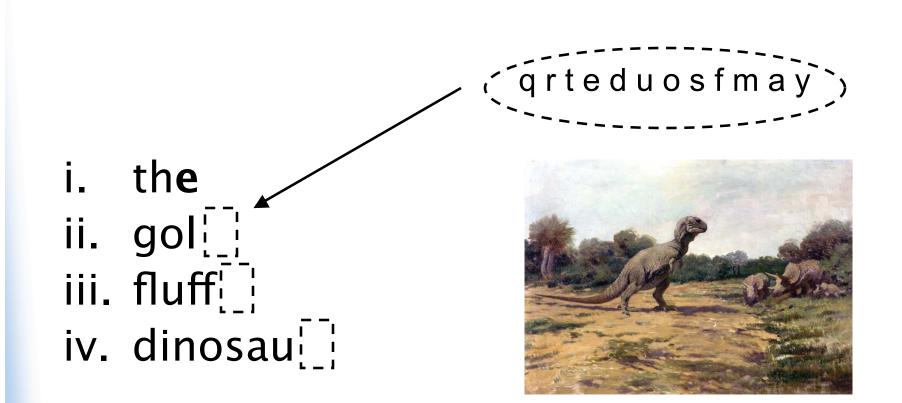
Markov Chains

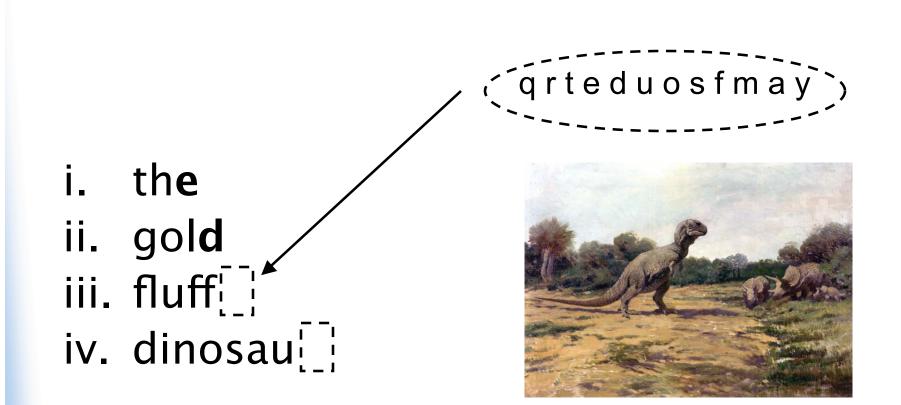
- Markov models are the basis for many gene prediction programs such as GeneMark.
 - GeneMark uses Hidden Markov models.
 - We developed a sequence prediction algorithm based on Markov chains called BAMM.
- Can apply to any sequence of information: nucleotide, amino acid, etc.

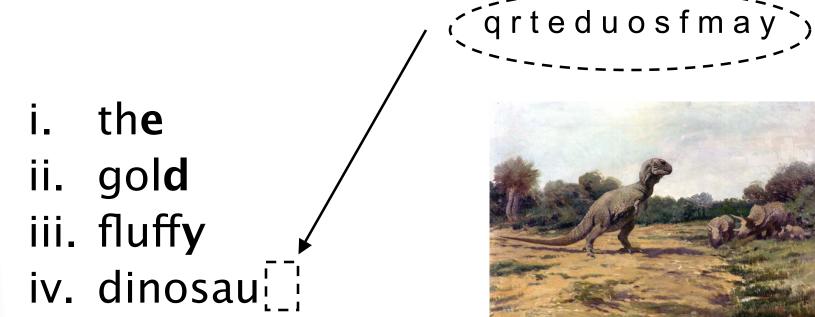
Markov models 101

- Markov models can be used to both generate & classify sequence data.
- The sequence frequency information must analyzed first, then it can be used.
- Let's get a feel for Markov models with an analogy..











(qrteduosfmay)

Markov chain fundamentals

- The number of "letters" remembered by the Markov chain are known as its <u>order</u>.
- Markov chains can generate the next letter in the sequence based on the model frequencies.

Markov chain fundamentals

- Longer words like "dinosaur" were easier to guess than shorter ones like "gold" (could have been "golf").
- Larger <u>order</u> Markov chains generally do *better* prediction.

Markov chains for Prediction

- Earlier you became human Markov models to generate words using your knowledge of *English*.
- What if I <u>only</u> gave you a sequence of characters & wanted to know which language it was???

Español or English?

tsnottearittheysaidto oneanothertetsdecid ebylotwhowillgetitthi shappenedthatthescr ipturemightbefulfille dthatsaidtheydivided myclothesamongthe mandcastlotsformyg armentsothisiswhatt hesoldi

idamossedijeronunosa otrosechemossuertesp araveraquienletocayasi lohicieronlossoldadose stosucedioparaquesec umplieralaescrituraque diceserepartieronentre ellosmimantoysobremir opaecharonsuer

Español or English?

tsnottearittheysaidto oneanothertetsdecid ebylotwhowillgetitthi shappenedthatthescr ipturemightbefulfille dthatsaidtheydivided myclothesamongthe mandcastlotsformyg armentsothisiswhatt hesoldi

idamossedijeronunosa otrosechemossuertesp araveraquienletocayasi lohicieron**los**soldadose stosucedioparaquesec umpliera**la**escrituraque diceserepartieronentre **ellos**mimantoysobre**mi** ropaecharonsuer

Doing Prediction

- Frequent patterns (words) help you see the *language* or model classification.
- It's difficult to make sense of the sentences without knowing where to start reading.

Help with Reading Frame

tsnottearittheysaidtooneanother<u>L</u>e tsdecidebylotwhowillgetit<u>T</u>hishapp enedthatthescripturemightbefulfill edthatsaid<u>T</u>heydividedmyclothesa mongthemandcastlotsformygarme nt<u>S</u>othisiswhatthesoldi

Training for the Unknown

- Suppose you **don't know** either language.
- How do you do prediction without learning the meaning of every word in each language?

 $... beschlossensie die sesuntergewand wollen \ldots$

Training a Model

 You'd read lots of books in each language & learn the frequent words!

Example Training

- BAMM project used 6 million nucleotides of exons and introns each.
- **3 million** bases are used to test prediction.

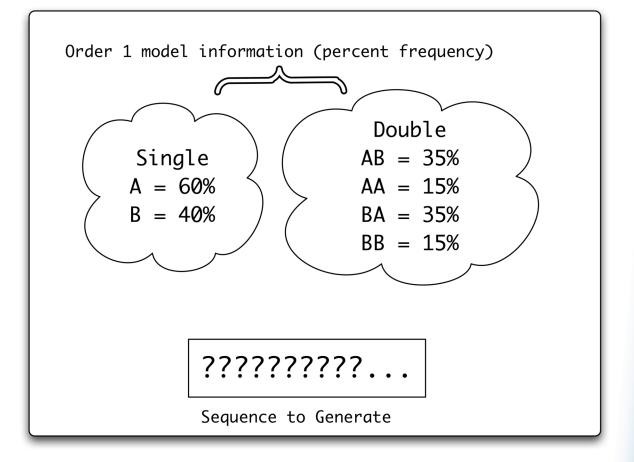
Markov chain types

- Inhomogeneous Markov models can "see" multiple reading frames.
 - Helps detect coding sequences.
 - More accurate.
- Homogeneous Markov chains don't care.

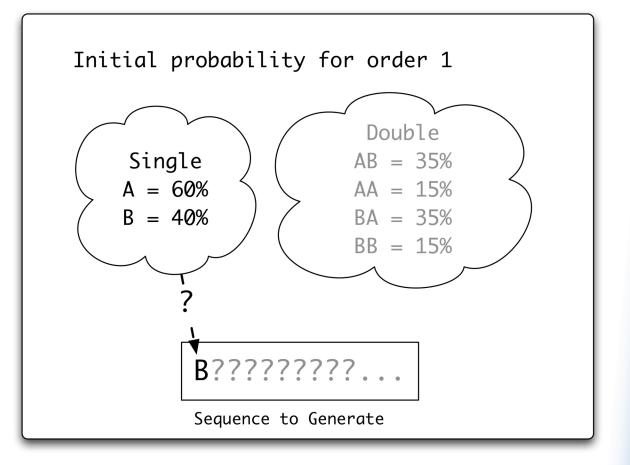
How does it work?

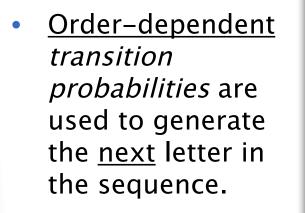
- Suppose we have been reading a lot of naturally occurring sequences represented by the alphabet {A,B} and have come up with some frequencies.
- We can use this information for sequence generation (modeling) and classification (prediction).

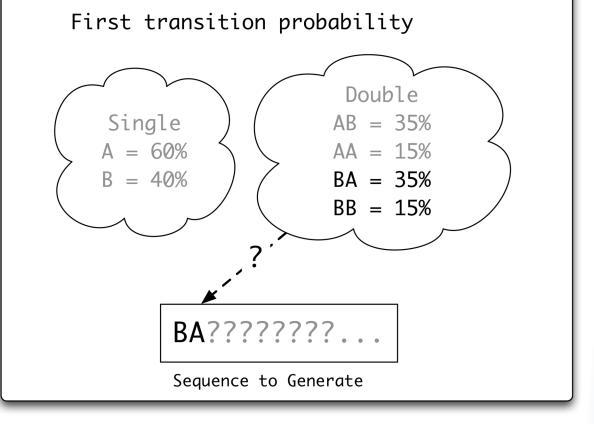
- Generating a sequence using a Markov model requires training first.
- Frequency data is for order 1 generation.



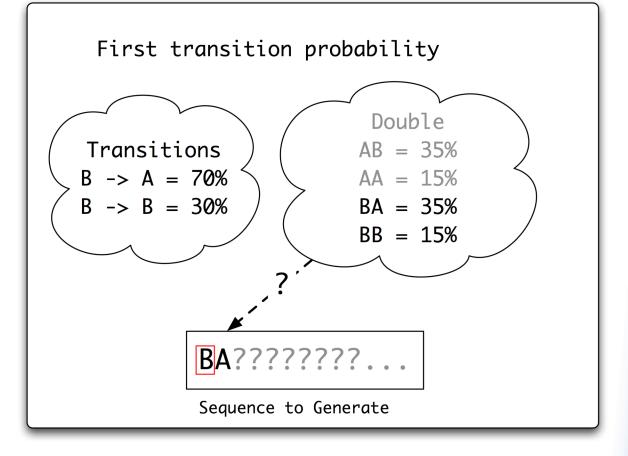
- To start the sequence, we use our initial probabilities.
- Generation is random, so each sequence can be unique.



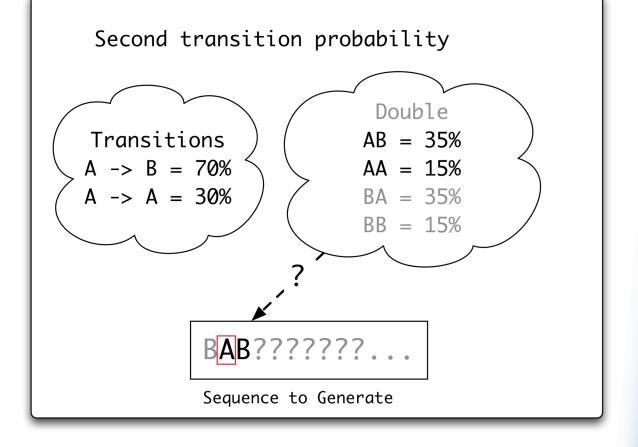




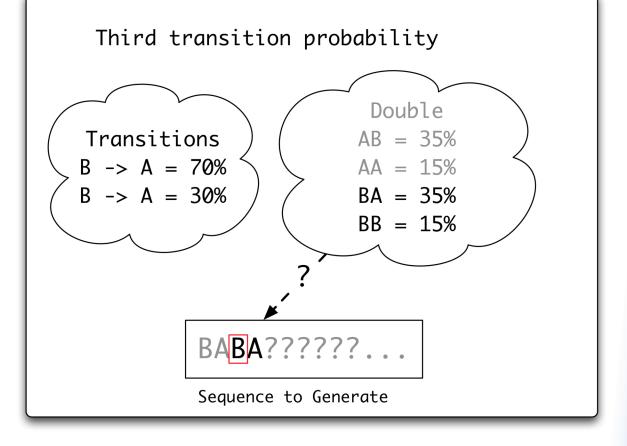
- <u>Relative frequencies</u> are used for the transition probabilities.
- These probabilities depend of the prefix [boxed], whose length is the order.



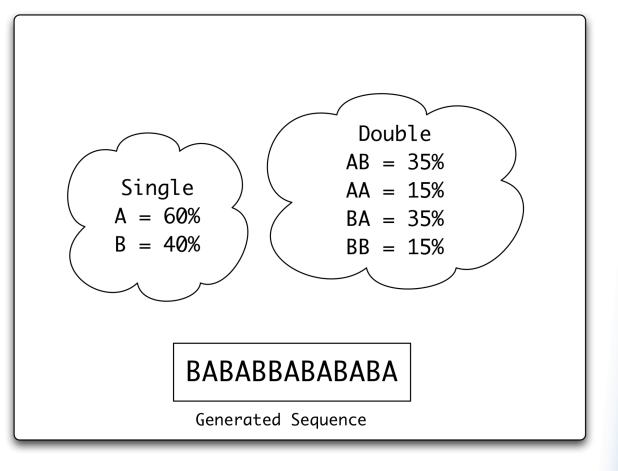
 Each new letter depends on the prefix, usually 0 to 5 bases for nucleotide sequences.



 The Markov chain algorithm continues as before until the desired number of letters is generated.



 While any permutation of the sequence is *possible*, not all sequences will be equally <u>likely</u>...



Testing probability

• Suppose we have two sequences:

- BBBB
- ABAB

How likely is each sequence? Recall:

Single	Double
A = 60%	AA = 15% AB = 35%
B = 40%	AA = 15% AB = 35% BB = 15% BA = 35%

Probability of BBBB

• For the *BBBB* sequence, we get:

- ▶ B (0.40) -> B (0.30) -> B (0.30) -> B (0.30)
- Total probability = (.4)(.3)(.3)(.3) = 0.0108

What about *ABAB*?

Initial: B = 40% Transitions used: B -> B = 30%

Probability of ABAB

• For the ABAB sequence, we get:

- A (0.60) -> B (0.70) -> A (0.70) -> B (0.70)
- Total probability = (.6)(.7)(.7)(.7) = 0.2058

• ABAB is a more probable.

Prob(ABAB) = 0.2058 > 0.0108 = Prob(BBBB)

Initial:

$$A = 60\%$$

 $B \rightarrow A = 70\%$
 $B \rightarrow A = 70\%$

Models

- The total probability was determined by the initial & transitions probabilities. These probabilities characterize our model.
 - Let's call our previous example the "Ab model."
- Now consider a *null* model for uniformly random sequences:

= 25%

= 25%

Now under the null model

- Prob(BBBB | null) = $(0.5)^4 = 0.0625$
- $Prob(ABAB | null) = (0.5)^4 = 0.0625$
- Given sequence ABAB, what is the probability of the "Ab model" being used to generate it & not the null one?

A little likelihood

 Probability of "Ab model" given ABAB is about 77% versus the null model.

_

Prob("Ab model" |ABAB) =

 $\frac{P(ABAB|\text{``Ab model''}) \cdot P(\text{``Ab model''})}{P(ABAB|\text{``Ab model''}) \cdot P(\text{``Ab model''}) + P(ABAB|\text{null}) \cdot P(\text{null})}$ $\frac{P(ABAB|\text{``Ab model''}) \cdot \frac{1}{2}}{P(ABAB|\text{``Ab model''}) \cdot \frac{1}{2} + P(ABAB|\text{null}) \cdot \frac{1}{2}}{P(ABAB|\text{``Ab model''})}$ $\frac{P(ABAB|\text{``Ab model''})}{P(ABAB|\text{``Ab model''}) + P(ABAB|\text{null})}$ $\frac{0.2058}{0.2058 + 0.0625}$ 77%

 Probability of "Ab model" given BBBB is less than 15% versus the null model.

Feeling the Odds

Given some sequence S, what are the odds of that sequence being the "Ab model" versus null?

$$Odds(sequence) = \frac{P(model = "Ab model" | sequence)}{P(model = null | sequence)}$$

$$= \frac{P(S|\text{``Ab model''})/P(S|\text{``Ab model''})+P(S|\text{null})}{P(S|\text{null})/P(S|\text{``Ab model''})+P(S|\text{null})}$$

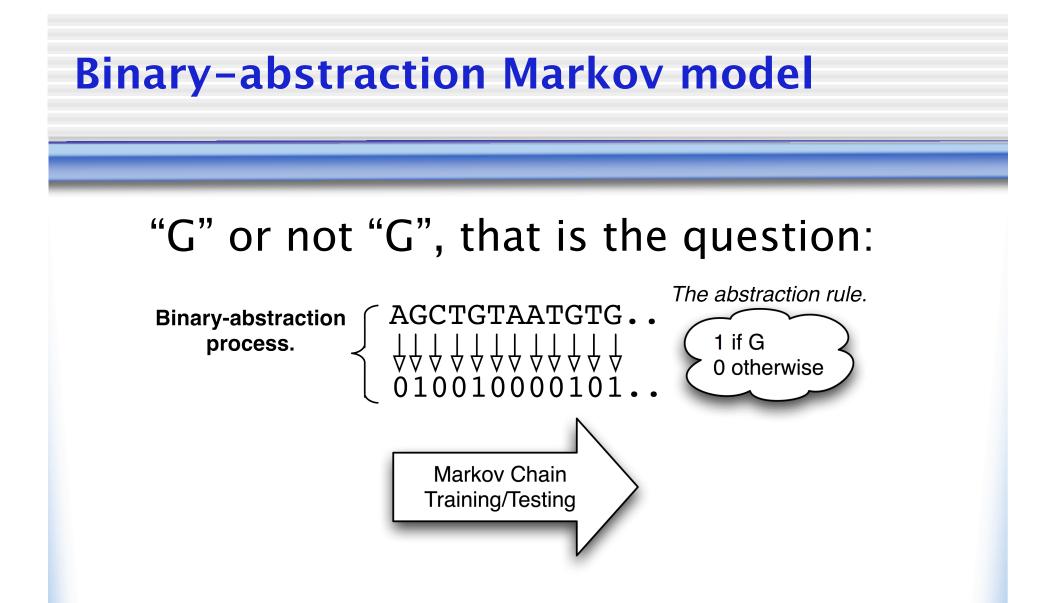
$$= \frac{P(S|\text{``Ab model''})}{P(S|\text{null})}$$

Feeling the Odds

- For the odds of *ABAB* we can see that:
 - $0.767/(1-0.767) = \underline{3.29} = 0.2058/0.0625$
- The odds of *BBBB* are: <u>0.172</u>
- Normally, since Markov chains deal with very small probabilities, the chain is calculated in log-space.
- The score of a sequence being "Ab model" versus *null* is the log odds.
 - Score(*BBBB*) = $\log(0.172) = -0.762$
 - Score(ABAB) = log(3.29) = +0.517

Markov chains in demand

- Markov chain log probabilities (or log odds) can be used by themselves or as part of more complicated prediction algorithms.
 - Hidden Markov model
 - Support vector machines (BAMM)



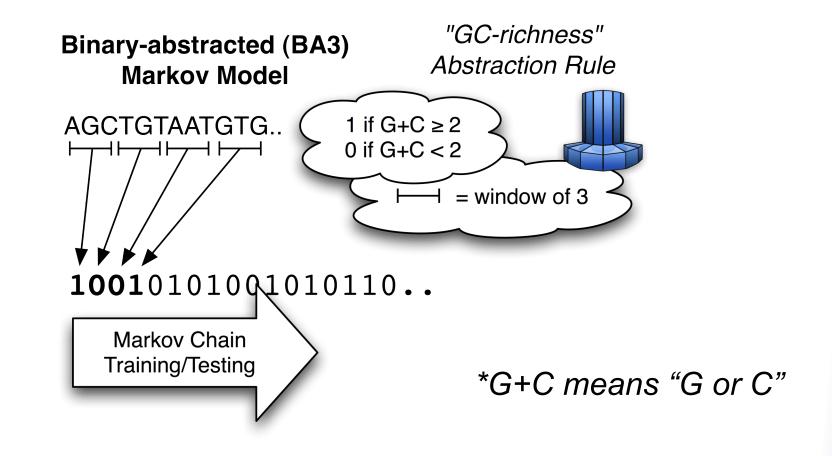
Abstraction Rule

- Abstraction rules indicate how to reduce nucleotide information into a binary code.
- Abstraction rules depend on the nucleotide word length.

How many ways can I reduce nucleotide information?

Word Length	# Words	# Abstraction Rules	
1	4	16	
2	16	65,536	
3	64	1.84 x 10 ¹⁹	
4	256	1.16 x 10 ⁷⁷	

Nucleotides Words of Length 3



Binary-abstraction Markov model

- Binary-abstraction Markov models allow one to analyze longer nucleotide sequence words by reducing the information analyzed.
- Analogous to replacing all articles in a sentence with 'A', verbs with 'V', and nouns with 'N', except in our case one must find what to replace first! Units of meaning are not obvious.

Profile HMMs

- Uses protein multiple sequence alignments to build an HMM profile of related proteins.
- The profile can be used to search for remote protein homologues within databases.

HMM Modeler

- Customizable profile HMM tool for remote homologue identification.
 - Implemented as a Chimera plug-in.
 - Joint effort of the Salzburg University of Applied Sciences with Salzburg University
- Astral Protein Database has protein sequences with less than 40% identity.
- SCOP protein families are grouped by structure.

Sample Alignment

Protein ID	Insertion	Match Column	Deletion
MSA			
dla6ma_la6m.pdb		VLSEGEWQLVLHVWAK-VEA	
dlasha_lash.pdb dlb0ba lb0b.pdb		ANKTRELCMKSLEH-AKVD	TSNEARQDGIDLYKHMFENYPPLRKYFF
dlcg5b lcg5.pdb			
dlcqxal_lcqx.pdb			
dlecaaleca.pdb			H IDIIKCFIQRMFEAHPELKNVFF
dlew6a lew6.pdb		LSADQISTVQASFDK-VKG	
dlgcva lgcv.pdb			
dlgcwb_lgcw.pdb			
dlh97alh97.pdb			
dlhlba lhlb.pdbGGTLAIQA-			
dlirdalird.pdb	QG		
dlit2a_lit2.pdbPIIDQGPL			
dlitha lith.pdb			
d1j17a1j17.pdb			
dlmbaa lmba.pdb		SI SAAQAQA VASIWAD-IAGAD-	NGAGVGRECLSRF1SAHFEMAAVFC
dlor4a lor4.pdb ETA-YFS			
dlqlfalqlf.pdb			
dltu9altu9.pdb		NAADBVMOSVCB-CCA	STEERGIVELAKELASSPOTRAKEL
dlurva_lurv.pdb		FLSFAFRKAVOAMWAR-LVA	NSEDVGVATLVREEVNEDSAKOVES
dlx9fa lx9f.pdb		DCCSVEDRREIRHIWDD_VWSSSE	
d1x9fb 1x9f.pdb			
dlx9fclx9f.pdb			
d2gdma2gdm.pdb		GALTESOAALVKSSWEE-FNA	NIPKHTHRFFILVLEIAPAAKDLES
d2h8fb1 2h8f.pdb		VEWTDKERSIISDIFSH-M	DYDDIGPKALSRCLIVYPWTORHES
d3sdha3sdh.pdb			and the second secon

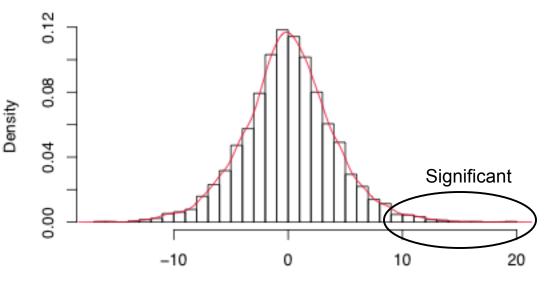
Profile HMMs

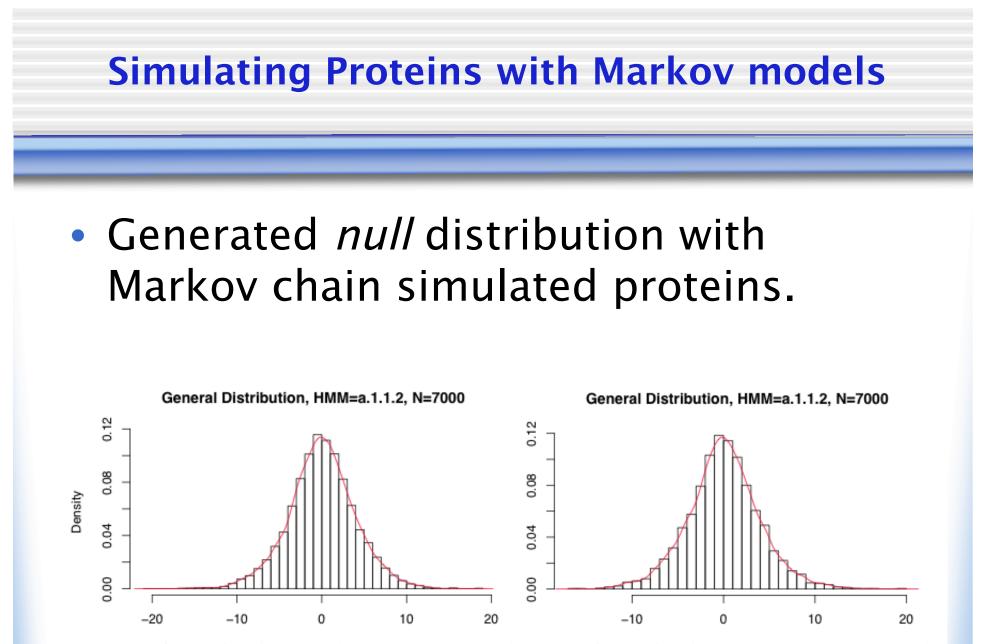
- Match columns, deletions, and insertions are used to develop the profile HMM of the protein family.
- One can search protein databases using the profile, and based on the query score, filter for membership.

Evaluating remote homologues

- Scores are corrected for length bias.
- A *null* distribution is created of <u>non-</u> <u>protein-family</u> scores.
- Scores that exceed a threshold of significance, say greater than 95% could be counted.

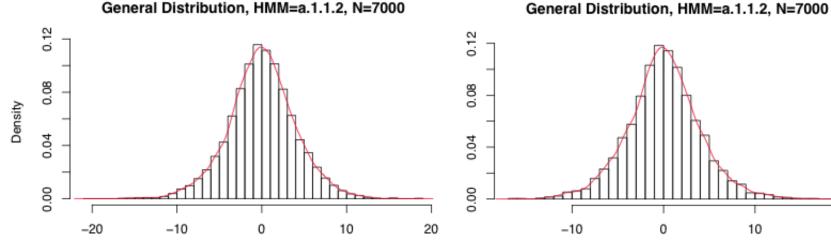
General Distribution, HMM=a.1.1.2, N=7000

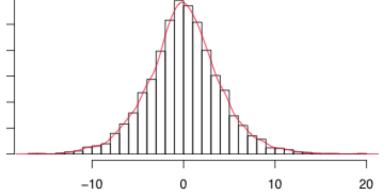




Reverse.Corrected.Score (u=0.02943 sd=3.966 sk=-0.04014 kt=3.878)

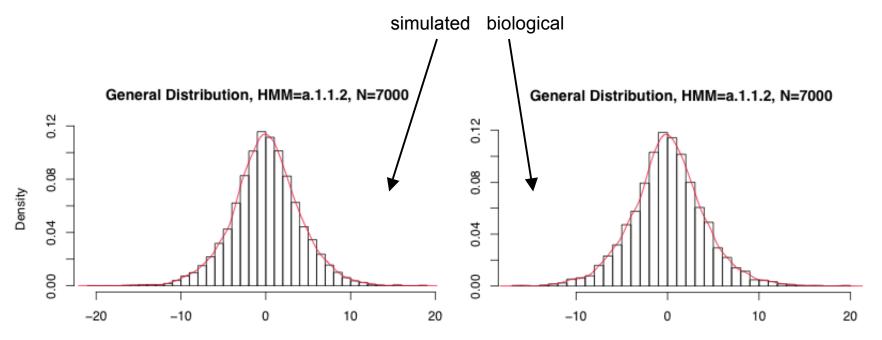
- Simulated proteins are generated from Astral database frequency information for Markov order 2.
- Which is the biological distribution?





Reverse.Corrected.Score (u=0.02943 sd=3.966 sk=-0.04014 kt=3.878)

 Simulated proteins can smooth the null distribution or reduce computation time.



Reverse.Corrected.Score (u=0.02943 sd=3.966 sk=-0.04014 kt=3.878)

In Conclusion

- Markov chains can be used for any sequence data.
- Useful in gene prediction, remote homologue identification, and much more.
- Can be used to generate AND discriminate sequence data.

Thank you for your attention.

Questions? 问题?

¿Preguntas? Fragen?

вопросы?

質問か。