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ABSTRACT
Motivation: Multidimensional scaling (MDS) is a well known
multivariate statistical analysis method used for dimensionality
reduction and visualization of similarities and dissimilarities in
multidimensional data. The advantage of MDS with respect to
Singular Value Decomposition (SVD) based methods such as
Principal Component Analysis (PCA) is its superior fidelity in
representing the distance between different instances specially
for high-dimensional geometric objects. Here we investigate the
importance of the choice of initial conditions for MDS, and show that
SVD is the best choice to initiate MDS. Furthermore, we demonstrate
that the use of the first principal components of SVD to initiate the
MDS algorithm is more efficient than an iteration through all the
principal components. Adding stochasticity to the molecular dynamics
simulations typically used for MDS of large datasets, contrary to
previous suggestions, likewise does not increase accuracy. Finally,
we introduce a k nearest neighbor method to analyze the local
structure of the geometric objects and use it to control the quality
of the dimensionality reduction.
Results: We demonstrate here the, to our knowledge, most efficient
and accurate initialization strategy for MDS algorithms, reducing
considerably computational load. SVD-based initialization renders
MDS methodology much more useful in the analysis of high-
dimensional data such as functional genomics datasets.
Contact: arndt@ihes.fr

1 INTRODUCTION
The appropriate and faithful visualization of high-dimensional data
is often a prerequisite for their analysis as the human visual cortex
is still one of the most powerful tools to detect and conceptualize
structure in data (Holmes (2006)). Furthermore, communication of
numerical and statistical results is greatly aided by the intuition

∗To whom correspondence should be addressed. Tel: +33 1 60 92 66 65;
Fax: +33 1 60 92 66 09.

arising from appropriate representations of data. Different methods
for the required dimensionality reduction have been developed
(Berthold and Hand (2003)).

An entire family of approaches, such as Principal Component
Analysis (PCA) finds the minimal orthonormal basis using a
mathematical tool called Singular Value Decomposition (SVD).
These methods, using different similarity or dissimilarity measures
such as covariance or correlation, order the ensemble of components
by their statistical deviation, and for visualization only the first
two or three components are retained. Thereby, the statistical
information in the first components are entirely retained, whereas
the one of the subsequent components is entirely lost. Today’s
high-dimensional biological datasets can easily contain thousands
of instances (number of measures) with 105-109 variables (number
of parameters measured). The repartition of information is usually
homogeneous over the entire number of variables. In consequence,
considering only the first components given by SVD based
techniques is not necessarily the best choice.

Multidimensional Scaling (MDS) is a methodology that reduces
dimensionality using only the information of similarities or
dissimilarities between instances, hereafter regrouped in the general
term of ”distance”. The search for an optimal configuration, is
reduced to finding the global minimum of a function evaluating
the loss of distance information. To be sure to find an acceptable
minima (i) an initial state for the optimization algorithm, and (ii)
an optimization algorithm and the appropriate parameters have to
be appropriately chosen. Recently, Andrecut (2009) has shown
that the best choice for the second is a Molecular Dynamics
Multidimensional Scaling approach.

We demonstrate here that the choice of the initial position is
paramount to the quality of the representation and its computational
efficiency. By using SVD for providing an initial configuration for
MDS, we obtain a significantly increased computational efficacy.
Interestingly, we also demonstrate that performing an iterative
MDS, or adding stochastic energy during the molecular dynamics
MDS execution do not increase performance or reproducibility
of the algorithm. We also investigate the local structure of the
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geometric objects after dimensionality reduction with our different
methodologies, and then evaluate the accuracy of the different
approaches developed here on biological data. These investigations
and the use of SVD to the initial state allow to better define and
control the dimensionality reduction process for high-dimensional
data.

2 METHODS
2.1 Singular value decomposition
Given a data matrix X with n rows and p columns and xij its value
in row i and column j, we denote X̄i the p components vector
corresponding to row i of the matrix, and X

¯ j
the n components

vector corresponding to column j of the matrix. A set of vector X̄i
is then a set of instances, whereas a set of vector X

¯ j
is a set of

variables. In all the following we will use this notation for vectors
extracted from X .

It is known (Schmidt and Stewart (1992)) that every rectangular
matrix can be decomposed using its singular values:

X = USV t (1)

where U (left singular vectors) and V (right singular vectors)
are both square orthogonal matrices, and S is a rectangular matrix
containing the singular values (si) which are positive (Sii = si
and Sij = 0). U ,S, and V , are reorganized in order to have
s1 > s2 > ... > sr , with r being the rank of S. Generally, before
performing SVDX is centered, so the mean of each column is equal
to zero. In this context, rank(X) = rank(S) ≤ min(n − 1, p) if
X is n.p.

Singular value decomposition provides three major types of
information:

(i) A new data matrix Xnew, which represent the data points in
a new orthonormal basis with a minimum number of components,
and where distance between the instances is preserved.

(ii) Inertia parameters ci = si/
∑
i si (with

∑
i ci = 1) indicate

the standard deviation and relative contribution of the cloud of
points on each principal component.

(iii) The matrix V carrying the individual contributions to each
principal component. These different types of information have
already previously been used in the literature to infer biological
knowledge in various settings (Alter et al. (2000, 2003); Wall et al.
(2003); Fellenberg et al. (2001)). The simplest way to find SVD,
is to search first for the eigenvalues and the eigenvectors of the
inner and outer products. As finding the eigenvalues of a matrix
X with n rows and p columns, is hard to perform for objects with
a high number of variables, this step is only feasible if either n or
p are small (typically inferior to 1000, which is usually the case
in biological datasets). If both n and p are large one is obliged to
use iterative Singular Value Decomposition techniques as shown
in (Schmidt and Stewart (1992)). One advantage of using SVD is
its close link to classical techniques of dimensionality reduction
such as Principal Component Analysis (PCA), Classical Scaling
(cMDS), Principal Component Correlation Analysis (PCCA), and
Correspondence Analysis. The different results of these techniques
can be obtained using SVD and a proper normalization of the data,
as shown below. SVD allows to demonstrate that the inner-product
(XXt) and outer-product (XtX) of a data matrix X have the same

eigenvalues λi, with λi = s2i . If X = USV t then:

XXt = USV t(V StU t) = USStU t (2)

XtX = (V StU t)USV t = V StSV t (3)

Note also that missing values in data can be imputed using SVD
(Troyanskaya et al. (2001); Candes and Recht (2008); Brock et al.
(2008)). If the number of missing values is relatively low, the
Eckart Young theorem (Eckart and Young (1936)), which is the
most commonly used theorem for matrix approximation, assures
that the result of the SVD will change only in the value of the
last singular values. Hence, for a rapid imputation, the row average
method (Troyanskaya et al. (2001)), can be used which is generally
sufficiently precise in most cases. Also, principal component
analysis is a very good choice for the initial state for K-means
clustering (Ding and He (2004)). In the new representation given
by SVD, cluster structure of the data will then naturally appear, and
thus provide a natural interpretation of clusters.

2.2 SVD and classical techniques of dimensionality
reduction

Principal Component Analysis (PCA) relies on the search of the
eigenvectors’ covariance matrix. Hence, performing PCA reduces
to finding the outer-product’s eigen-vectors. The singular-values of
X are the square root of the outer-product’s eigen-values. The link
between PCA and SVD then becomes obvious (Wall et al. (2003)).
Classical scaling (cMDS for classical Multidimensional Scaling)
was invented to embed a set of instances in the simplest space
possible, with the constraint of preserving the Euclidean distance
between data points. Euclidean distance can be written as a sum
of inner-products X̄i.X̄j , one can pass from an Euclidean distance
matrix to an inner product matrix by a simple matrix manipulation
called double centering (Torgerson (1952)). Consequently, Classical
scaling consists in finding eigen-value factorization of the inner-
product matrix, so it can be performed using SVD. The link
given by SVD between inner and outer product matrices implies
that PCA and Classical Scaling give the same results, a fact
reflected by Classical Scaling sometimes being referred to Principal
Coordinate Analysis. Principal Component Correlation Analysis
(PCCA) uses correlation between variables to find a minimal
orthonormal basis. After a proper normalization of the data with

their statistical deviation: X̃ =

(
xij

σ(X
¯ j)

)
, PCCA is performed

by eigen-value factorization of the outer product matrix. Hence,
after normalization of the data PCCA results are given by SVD.
Correspondence analysis is used in the dimensionality reduction
of contingency tables obtained after an operation of counting on
categorical data (Berthold and Hand (2003)). This method can be
used for microarray data analyses (Fellenberg et al. (2001)) as each
value of gene expression is in fact a count of the number of RNAs
produced. Generally speaking, this technique is used to compare
two vectors in terms of their distribution profiles using the chi-
square distance. When the distance is equal to zero, both vectors
have the same statistical distribution. It can be shown (Cuadras and
Fortiana (1995)) that χ2 distance can be reduced to an Euclidean
distance after normalization of the data X̃ik = xik

√
W

(
√∑

l xlk)(
∑

l xil)

Thus, to find the minimal space which embeds the data and
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Fig. 1. Comparison of the results of different dimensionality reduction techniques on the same dataset. The dataset ”d1 — 96Cell”, composed of ninety-
six individual transcriptome profiles generated from thirty-two different human tissues (c.f. Table 1, and section 2.4) was represented in 2D space using:
(a) Singular Value Decomposition based on covariance, (b) Singular Value Decomposition-initialized Multidimensional Scaling; (c) random initialized
Multidimensional Scaling, and (d) as in c using the same algorithm and leading to a different random position matrix. The peripheral data points were
color coded and labeled according to the human tissue analyzed. For a and b the central cloud of points has been zoomed into at the same scaling factor. The
resulting Kruskal-Stress e for each of the dimensionality reductions is indicated. Similar computations were used to generate Table 2.

conserves the information of χ2 distance one performs a cMDS or
PCA on the rescaled data matrix using SVD results.

2.3 Multidimensional scaling
Multidimensional scaling (MDS) is a class of techniques to
represent instances in an r dimensional space given an initial
state and a similarity or dissimilarity matrix (Kruskal and Wish
(1978); Cox and Cox (2000)). Recently, Molecular Dynamics (MD)
approaches have been used to perform MDS for high-dimensional
objects drastically increasing quality of the dimensionality reduction
(Andrecut (2009)). We have also developed a similar approach
based on a spring analogy. Data points are connected to all other
instances with virtual springs. The springs will tend to return to
their equilibrium length during molecular dynamics simulation. The
equilibrium length for the spring between point i and point j will be
defined as the Euclidean distance d(X̄i, X̄j) in the initial state. For
each instance X̄i a force is defined F (X̄i), which is the sum of
all spring interactions Fspr(X̄i, X̄j) with the other instances X̄j ,

minus a friction term to avoid oscillation of the spring network:

Fspr(X̄i, X̄j) = −kij(δ(X̄i, X̄j)− d(X̄i, X̄j))(X̄j − X̄i) (4)

F (X̄i) =
∑
j 6=i

Fspr(X̄i, X̄j)− γmi
˙̄Xi (5)

with δ(X̄i, X̄j) being the distance between instances in the r
dimensional space, kij the strength of spring ij, γ the friction
parameter, and mi the mass given to each point. We consider that
every spring and all instances are equal in strength and weight so
kij and mi are the same for every i and j (kij = k and mi = m).
It is, however, possible to use different parameters — for instance
according to experimental precision — if different weights shall be
considered for the different instances. A molecular simulation using
the force vector is then executed. Following Newton’s law it follows:
mi

¨̄Xi = F (X̄i), with ¨̄Xi the double temporal derivation of vector
X̄i(t). In order to find the new position and velocity of and instance
at the next time-step a Verlet integration is used:

X̄i(t+ ∆t) = 2X̄i(t)− X̄i(t−∆t) +A∆t2 (6)
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˙̄Xi(t) =
X̄i(t+ ∆t)− X̄i(t−∆t)

2∆t
(7)

with ˙̄Xi(t) the temporal derivation of vector X̄i(t). The algorithm
is run with simulation time t increasing. To avoid divergence of the
Verlet algorithm parameters of the simulation k, m, γ ∆t have to
be well chosen. Here we used: k = 1, m = 5, γ = 0.1 ∆t = 0.02
(c.f. Figure 2A). For the initial state the data provided to the MDS
algorithm were rescaled to fit in a hypercube with a diameter of 6
by multiplying the initial state matrix by a scalar α. To control the
minimization process at each time step, a cost function termed the
Kruskal stress is calculated according to (Cox and Cox (2000)) :

e =

√∑
i

∑
j(δ(i, j)− d(i, j))2∑
i

∑
j d(i, j)2

(8)

this global parameter is a direct evaluation of the amount of energy
in the system and hence the loss of distance information.
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Fig. 2. Parameter Optimization and Kruskal Stress (e) evolution over the
number of simulation iterations (t). Optimizing the choice of parameters
k (a) and γ (b) using the dataset ”d6 — CCYier” in covariance space.
Comparison of the SVD-MDS, MDS initialized with all points in the center
(zeroMDS), and MDS initialized by stochastic positions (stochastMDS)
methods on different datasets (c) ”d1 — 96Cell” in correlation basis, (d)
”d2 — 96Cell T” in covariance basis, (e) ”d3 — Iris” in correlation basis,
(f) ”d10 — Ozone” in covariance basis.

ID Dataset Name No. of Instances No. of Variables

d1 96Cell 96 32878
d2 96Cell T 96 1553
d3 Iris 150 4
d4 Wine 178 13
d5 Stochast 200 200 50
d6 CCYier 516 12
d7 Pima 768 9
d8 96Cell T transposed 1553 96
d9 Secom 1567 590
d10 Ozone 2565 72
d11 Stochast 3000 3000 300
d12 Ecoli 4288 7
d13 Wave 5000 22

Table 1. The different datasets used in this study.

2.4 Datasets used in this study
To test and illustrate the algorithm discussed here, we have used
several publicly available datasets of different origin. We have
used two different transcriptome datasets. Briefly, the cellular
transcriptome is defined as the ensemble of RNA molecules
resulting from gene expression in a cell. Using microarray
technology, in the human case, some thirty-thousand different RNA
species can be quantified simultaneously. The dataset here referred
to ”d1 — 96Cell” includes ninety-six transcriptome measurements
generated from thirty-two individual human tissues under non-
pathological conditions. This dataset was initially published by
(Dezso et al. (2008)), and is available for download from:
http://mace.ihes.fr using accession number: 2914508814. The
dataset here called ”d6 — CCYier” (Iyer et al. (1999); mace
access. no.: 2960354318), is composed of twelve human fibroblast
transcriptome data points generated over twenty-four hours during
the cell-cycle. Note that we eliminated one (Interleukin 8, IL8) of
the 517 genes as an outlier from this dataset. The dataset ”d2 —
96Cell T” (c.f. Table 1), is a derivative of the initial dataset ”d1 —
96Cell”, where only genes were retained that are specific to one
and only one human tissue as provided in (Dezso et al. (2008)),
and removing again one outlier gene (Probe ID: 162105). The
dataset ”d8 — 96Cell T” (c.f. Table 1), is the transposed (Instances,
Variables) dataset ”d2 — 96Cell T”. All transcriptome datasets
were median normalized in log2-space and processed according to
standard procedures (Noth et al. (2006); Benecke (2008)). Seven
additional datasets with no relation to biology were used. Both
originate from the Machine Learning Repository (Asuncion and
Newman (2007)): http://archive.ics.uci.edu/ml (1) ”Iris” here ”d3 —
Iris”, (2) ”Wine” here ”d4 — Wine”, (3) ”Pima Indians Diabetes”
here ”d7 — Pima”, (4) ”SECOM” here ”d9 — Secom”, (5) ”Ozone
Level Detection” here ”d10 — Ozone”, (6) ”E. Coli Genes” here
”d12 — Ecoli”, and (6) ”Waveform Database Generator (Version
1)” here: ”d13 — Wave”. Please refer to the ML repository for
details on these data. Finally, we generated two random datasets:
(i) One with 200 instances and 50 variables between -6 and 6
here ”d5 — Stochast 200”, (ii) the other with 3000 instances and
300 variables between -6 and 6 here ”d11 — Stochast 3000”. The
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number of instances and the number of variables for all thirteen
datasets is given in Table 1.

3 RESULTS
3.1 Comparison of different initialization methods for

MDS
We postulated that the inconveniences associated with the combined
Molecular Dynamics MDS techniques (hereafter simply: MDS)
related to the dependence on the choice of the initial condition for
the simulation leading to insufficient control and being trapped in
local minima on the one hand, as well as the large information loss
when SVD techniques are used for dimensionality reduction on the
other hand, can be overcome when both methods are combined.
We therefore created an SVD-MDS algorithm which uses SVD to
compute the initial state of a molecular dynamics simulated MDS.
This SVD-MDS approach was then compared to SVD and MDS
on thirteen different datasets (see Table 1). Figure 1 well illustrates
the shortcomings of SVD and MDS alone and how SVD-MDS
overcomes those. The dataset ”d1 — 96Cell” containing ninety-
six different instances was used to compute a 2D representation
using SVD (Figure 1A), our combined SVD-MDS approach (Figure
1B), and two examples of MDS initialized by random positions
defining a 12 unit hypercube (Figure 1C & D). According to the
Kruskal stress e, MDS techniques (Figure 1B-D) better preserve
the distances between the instances and their relationship. The data
cloud is better resolved (see also blow ups) and the global distance
information loss is lower than for SVD.

In order to demonstrate generality of our approach we next
analyzed the twelve remaining datasets (Table 1) using four different
approaches: 1. SVD only, 2. SVD-MDS, 3. MDS initialized with all
data points placed at zero with minimal random noise (zeroMDS),
and 4. MDS initialized with random positions (stochastMDS).
The results are reported in Table 2. In all cases, we reduced the
dimensions to two. It becomes again apparent from the Kruskal
stress that the MDS-based techniques systematically outperform the
SVD. While stochastMDS, zeroMDS and SVD-MDS give similar
results in terms of the final information loss, the number of time-
steps needed to identify a minimum stress is greatly reduced using
SVD-MDS (Table 2, and for four examples Fig. 2). Therefore, SVD-
MDS approaches the final state (here defined as a Kruskal stress
value) faster than either of the MDS methods. We show an example
of stress evolution in Figure 3A where stochastMDS and zeroMDS
are slow due to the existence of local minima, and SVD-MDS
clearly outperform them.

3.2 Iterative dimensionality reduction using iSVD-MDS
We next wondered whether the dimensionality reduction could be
further improved by a step-wise reduction of one dimension after
another. To this end we compared again the performance of the
three techniques SVD-MDS, MDS, and iterative SVD-MDS (iSVD-
MDS) on the different datasets. In iSVD-MDS, for each successive
round a SVD followed by a subsequent molecular dynamics
MDS is performed. As can be seen in Figure 3A, SVD-MDS
rapidly approaches a minimal Kruskal stress configuration over the
simulation time. The previously described MDS procedure which
uses stochastic initiation for the molecular dynamics simulation
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Fig. 3. Iterative SVD-MDS and robustness of SVD-MDS. (a) Comparison
of the SVD-MDS, zeroMDS, stochastMDS, and iterative SVD-MDS (iSVD-
MDS) methods on dataset ”d13 — Wave” in covariance basis. (b)
Comparison of the iterative SVD (iSVD) and iSVD-MDS methods on
dataset ”d1 — 96Cell” in correlation basis. Evolution of stress over number
of simulation iterations with injection of energy, on different datasets (c) ”d2
— 96Cell T” in covariance basis, (d) ”d5 — Iris” in covariance basis.

requires much more simulation time to find the same minimal
stress configuration as the SVD-MDS algorithm. Finally, the
iterative iSVD-MDS approach will also converge to the identical
minimum obtained by the other methods, however, as for each
component a separate simulation is performed the convergence
time is greatly increased. Albeit many different simulations on the
different datasets we have never obtained a final configuration using
iSVD-MDS were the Kruskal stress would allow to conclude on an
improved performance when compared to SVD-MDS. Therefore,
the iterative method does not allow for improved accuracy, but
rather prolongs simulation time with no immediate gain (Table
3 summarizes the results). We next compared iSVD and iSVD-
MDS methods to determine how the loss of information is
distributed during iterative dimensionality reduction. As can be
seen in Figure 3B for both procedures the amount of stress or
lost information increases both relatively and absolutely with the
number of components removed. Note also, that the iSVD-MDS
method better preserves at every consecutive iteration the distance
information of the object (Figure 3B).

3.3 Molecular Dynamics dimensionality reduction with
added stochasticity

In Andrecut (2009) an approach reminiscent of simulated annealing
was used to avoid getting trapped in local minima during the
molecular dynamics simulation. This combination of methods
is equivalent to adding a stochastic force to all data points
Fstochastic(X̄i) = −T ∗ s(t) where s(t) is a random number
given by a generalized Gaussian stochastic distribution, and T
is the temperature of the system. By decreasing T exponentially
during the simulation one expects to reach the global minimum.
Adding stochasticity to the molecular dynamics driven MDS is,
after (Andrecut (2009)), required to insure reproducibility of the
algorithmic performance.
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ID
Dataset
Name

Metric
SVD SVD-MDS zeroMDS stochastMDS

e e t e t e t

d1 96Cell R2 0.6472 0.3409 2500 0.352 2500 0.3478 2500
d2 96Cell T Cov 0.5001 0.1401 4500 0.146 4500 0.1503 4500
d3 Iris Cov 0.0421 0.0344 509 0.0343 3554 0.0344 4059
d4 Wine Cov 0.0010 0.0010 0 0.0064 4500 0.0061 4500
d5 Stochast 200 Cov 0.7513 0.4088 1500 0.4169 1500 0.4157 1500
d6 CCYier Cov 0.1634 0.0765 400 0.0932 3500 0.1079 4500
d7 Pima Cov 0.0964 0.0708 700 0.105 3500 0.1098 3500
d8 96Cell T transposed R2 0.6954 0.1498 4500 0.1572 4500 0.1715 4500
d9 Secom Cov 0.1801 0.1168 750 0.1217 4499 0.1283 4375
d10 Ozone Cov 0.1223 0.0935 712 0.0935 2587 0.0951 2143
d11 Stochast 3000 Cov 0.9067 0.4353 130 0.4382 130 0.438 130
d12 Ecoli Cov 0.1634 0.000 0 0.0202 4500 0.2484 4500
d13 Wave Cov 0.2922 0.2132 324 0.2132 2252 0.2132 1998

Table 2. Results from the different MDS algorithms applied to the various datasets (c.f. Table 1). CoV = covariance, R2 = correlation, e = Kruskal Stress, t =
time steps for MD simulation.

ID
Dataset
Name

Metric
SVD-MDS iMDS MDMDSlinear MDMDSexpo

e t e t e t e t

d1 96Cell R2 0.3409 2500 0.3381 232097 0.3453 5500 0.3421 2500
d2 96Cell T Cov 0.1401 4500 0.1494 92536 0.1465 4500 0.1542 4500
d3 Iris Cov 0.0344 509 0.0344 3008 0.0359 4500 0.0343 4000
d4 Wine Cov 0.0010 0 9.0E-4 10003 0.0089 4500 0.0067 4500
d5 Stochast 200 Cov 0.4088 1500 - - 0.4092 4500 0.4089 4500
d6 CCYier Cov 0.0765 400 0.0753 22508 0.1346 5500 0.1162 5500
d7 Pima Cov 0.0708 700 0.0692 27005 0.1128 5500 0.0986 5500
d8 96Cell T transposed R2 0.1498 4500 0.1525 122059 0.1832 4224 0.1822 4500
d9 Secom Cov 0.1168 750 - - 0.1511 5500 0.1396 4500
d10 Ozone Cov 0.0935 712 0.0935 66031 0.0944 4500 0.0951 3500
d11 Stochast 3000 Cov 0.4353 130 - - 0.4353 200 0.4353 200
d12 Ecoli Cov 0.0 0 - - 0.312 5500 0.2273 5500
d13 Wave Cov 0.2132 324 - - 0.2132 3671 0.2132 2203

Table 3. Results from SVD-MDS, iSVD-MDS, and both MD-MDS algorithms applied to the various datasets (c.f. Table 1). CoV = covariance, R2 =
correlation, e = Kruskal Stress, t = time steps for MD simulation.

To compare MD-MDS with our SVD-MDS algorithm we have
implemented different MD-MDS algorithms with stochastic energy.
We used two types of temperature-decrease, the first linear,
beginning with a temperature of 100J and decreasing linearly to
0J during 3000 steps of simulation; we call this method MD-MDS
linear. The second includes an exponential decrease from 100J to
below 0.1J during 3000 steps of simulation; we call this method
MD-MDS exponential. The function s(t) uses random numbers
generated uniformly between -0.5 and 0.5.

As seen in Table 3, SVD-MDS as well as the two MD-
MDS algorithms ”linear” and ”exponential” always identify final
configurations with the same amount of residual energy. It can also
be seen that SVD-MDS converges faster for these four examples
than the MD-MDS methods. In conclusion, the two MD-MDS

algorithms do not improve MDS, on the contrary they converge
slower.

We next asked whether or not similarly adding stochasticity to
the SVD-MDS algorithm would improve its performance. Figures
3C and 3D illustrate that indeed adding different amounts of energy
at different times of the simulation (arrows) does not lead to lower
energy minima. The SVD-MDS algorithm, similarly as the MD-
MDS algorithms (Table 3) always converges to the same energy
state. This has also been confirmed using other datasets (data
not shown). Taken together, the results using MD-MDS-lin and
MD-MDS-exp and SVD-MDS strongly suggest that only a single
ground-state is present. While we do not have any formal proof,
we believe that the detailed analysis of the geometric structure of
the data objects presented below also strongly argues in favor of a
global energy minimum.
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Fig. 4. Relative changes in k nearest neighbors (Entourage) are local, structural measures of dimensionality reduction and thus assess quality of the procedure.
As a function of the number of nearest neighbors k considered, the relative change in kNN between the initial high-dimensional space and 2D space is plotted
for the methods: SVD-MDS, zeroMDS, stochastMDS, iSVD-MDS, MD-MDS linear, and MD-MDS exponential. The datasets used are in: (a) ”d1 — 96Cell”
in correlation basis, (b) ”d2 — 96Cell T” in covariance basis, (c) ”d4 — Wine” in covariance basis, (d) ”d5 — Stochast 200” in covariance basis, (e) ”d6
— CCYier” in covariance basis, (f) ”d7 — Pima” in covariance basis, (g) ”d11 — Stochast 3000” in covariance basis, and (h) ”d13 — Wave” in covariance
basis.

3.4 Geometric structure
Kruskal stress directly evaluates the distance information deformation.
Graef et al. demonstrated in 1979 (Graef and Spence (1979)), that
it rather evaluates global deformation of the cloud of instances. To
gain information on local distances deformation we define a new
parameter, Entourage. For any one instance X̄i in the reference
distribution obtained through SVD (undistorted representation) we
consider its k nearest neighbors: Nref

i . In the new distribution
obtained after dimensionality reduction, we also compute the k
nearest neighbors for the same instance X̄i, and obtain a list:Nnew

i .
We then search for Gi = card(Nref

i

⋂
Nnew
i ), which will be the

number of instances common to both. This operation is repeated for
all instances i, and one obtains the Entourage parameter:

Entk =

∑n
i=1Gi

G
(9)

with G = nk a normalization parameter (Ent ∈ (0, 1)).
If Gi = card(Nref

i

⋂
Nnew
i ) ≈ 0.01card(Nref

i ) = 0.01k

for every i then Entk ≈ 0.01
∑n

i=1 k

nk
= 0.01, a difference of

1% between two values of Entourage corresponds to an average
deformation of 1% in the local organization. This parameter has
more signification for a small number of neighbors k compared to
the total number of points n.

The geometric properties of the data objects is analyzed using the
Entourage parameter. We have plotted the relationship of Entourage
and k for six different methodologies: zeroMDS, stochastMDS,
SVD-MDS, iSVDMDS, MD-MDS-lin, MD-MDS-exp in (Figure
4) for eight different datasets. From the selected examples it
becomes clear that again the SVD-MDS method outperforms the

different types of MDS over a wide array of structures analyzed
as the Entourage value is consistently higher no matter how many
different k nearest neighbors are considered. The iterative iSVD-
MDS method, due to the accumulation of small residual errors
during the molecular dynamics simulation, and the MDS method
give similar results. At the cost of increasing computational load, the
iSVD-MDS better and better approximates the SVD-MDS method.
In conclusion, the SVD-MDS method, under all conditions tested,
better represents the geometric structure of the datasets in low-
dimensional space when compared to the input object with rank(S)
components (given by SVD). Note that this holds even for objects
with equal stress.

Figure 1 illustrates the problem of rotational variance when
using stochastically initiated molecular dynamics simulations for
MDS. When comparing panels C and D as well as comparing
them to panel A and B that stochastMDS results produces
near-optimal solutions (with respect to the Kruskal stress), the
resulting orientation of the instances, however, is different (focus
for instance on the relationship between ”skeletal muscle” and
”fetal liver”). SVD-MDS on the contrary only produces a single
result. This observation, taken together with the results on the
relevance of stochasticity in the simulation obtained above, argues
for the existence of different equivalent energy minima that
only differ in the rotational orientation of the object and (at
best) only minimally in the Kruskal-stress; a fact predicted by
mathematical consideration. Hence, SVD-MDS not only reduces
significantly the computational load, but also insures uniqueness
of the resulting representation. The quality of this final and unique
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Fig. 5. Comparative analysis of cytokine activity measurements in an Indian malaria human patient cohort. The cytokine dataset from Prakash et al. (2006) was
represented in covariance space using SVD (a) and SVD-MDS (b). A simplified representation for SVD and SVD-MDS is shown in (c) and (d), respectively.
(e) Single linkage hierarchical clustering based on Euclidean distance of the severe malaria (SM, red) and cerebral malaria (CM, blue) patients according to
IL2 and TNFα activity.

representation can be demonstrated using the Entourage parameter.
The increase in fidelity in the representation of data should not
be underestimated (see also Figure 5). This is reminiscent to
techniques of principal manifold searches (Gorban et al. (2007))
were parameters describing topology, local organization or other
geometric characteristics are used.
A major advantage of using SVD to define the initial state is that it
provides the inertia of each principal component. The comparison
of the different internal structures of the studied datasets showed a
vast variety of profiles. A good dimensionality reduction technique
would ideally account for these differences. Taking into account the
inertia, the stress and the Entourage during the MDS process will
help to have an even more accurate representation of the data matrix
in low dimensional space.

3.5 Data Analysis
In order to demonstrate the applicability of the SVD-MDS
methodology and its superior performance we reanalyzed a
previously published biological dataset not yet used here (Prakash
et al. (2006)). The datasets consists of quantitative measures for
ten selected cytokines in a cohort of human malaria patients from
central India displaying different severeness of disease as well as

endemic and non-endemic control subjects. A total of 98 patients
were included in the original study by Prakash et al. (2006). The
main objective is to determine whether individual or combinations
of cytokine measurements can be used to determine whether an
individual is affected by cerebral malaria (CM), the most severe
form of the disease, and how to distinguish CM from severe
malaria (SM). Both forms of the disease require early detection
and prognosis which are pressing matters for health caretakers. We
have computed from the entire dataset (including the controls and
patients with mild malaria (MM)) SVD-based and SVD-MDS-based
representations of the cytokine activity measurements in covariance
space (Figure 5A & B). It becomes immediate evident that whereas
the representation by SVD-MDS identifies TNFα as having a
major contribution to one of the higher principal components, SVD
alone does not reveal this prominent role for TNFα leading to
the conclusion that the main variability in the patient samples is
due to IL2, IL6, and TGFβ (Figure 5C as opposed to 5D (SVD-
MDS)). The combination of IL2 and TNFα measurements alone
suffices, however, to separate SM (red) from CM (blue) patients in
single linkage hierarchical clustering based on Euclidean distances
(Figure 5E). The combination of IL2 and TNFαwould unlikely have
been identified as effective by SVD alone (Figure 5A). The role of
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TNFα in CM has been since also clarified when investigating the
auto-immune component of CM in Bansal et al. (2009).

4 CONCLUSION
Dimensionality reduction of complex, high-dimensional data is
an important problem which becomes ever more complicated due
to the increase of data concomitant with an increase in their
dimensionality. This is particularly true for data from modern
genomics analyses where more and more often data with thousands
of instances each over millions of variables are generated. We
demonstrate here how a combined molecular dynamics simulation
Multidimensional Scaling approach for dimensionality reduction of
high-dimensional data can be improved by better defining the initial
conditions. We have shown that Singular Value Decomposition
is most effective to create an initial condition for MDS. Using
links between SVD and different standard data analysis methods,
we demonstrate how our combined SVD-MDS method can be
used to improve geometric representation in low dimensional space
that are generally obtained with standard analysis methods (PCA,
Classical Scaling, PCCA, Correspondence analysis). We also show
that the use of iterative reduction or stochastic energy does not
increase performance of the algorithms in terms of finding a
optimal solution. Finally, we have investigated the local structure
deformation induced by dimensionality reduction, and confirmed
the superior accuracy of the SVD-MDS. Overall, the methodology
developed here should further advance our capacity to analyze high-
dimensional data such as the ones produced by functional genomics
approaches.
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