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SUMMARY We consider a chain of harmonic oscillators with dipole-dipole interaction between
nearest neighbours resulting in a van der Waals type bonding. The binding energies between en-
tangled and classically correlated states are compared. We apply our model to DNA. By comparing
our model with numerical simulations [1] we conclude that entanglement may play a crucial role in
explaining the stability of the DNA double helix.

PACS numbers:

Introduction.– The growing field of quantum biology
deals with the question if living systems use non-trivial
quantum effects to optimise some tasks. Studies range
from the role of quantum physics in photosynthesis [2–5]
and in the avian compass [6, 7], through to the obser-
vation that ‘warm and wet’ living systems can embody
entanglement given a suitable cyclic driving [8]. Except
for [9], where the possibility of intramolecular refrigera-
tion is discussed, all the above works focus on spin en-
tanglement. In this Letterwe raise the question about
the importance of continuos variable (CV) entanglement
[21] in macromolecules like DNA. We look at continu-
ously interacting subsystems of the DNA strand. This is
not to be confused with a full chemical bonding, where
electrons are shared between atoms. Also the question
of existence of entanglement is non trivial, as for weak
interaction or high temperature the state of the system
might still be separable.

Our work was motivated by a numerical study on the
importance of dispersion energies in DNA [1]. Dispersion
energies describe attractive van der Walls forces between
non-permanent dipoles. Recently many works [10, 11] re-
alised its importance to stabilise macromolecules. Mod-
elling macromolecules like DNA faces the problem of the
huge number of atoms. This makes it nearly impossi-
ble to fully quantum mechanically simulate the system.
Therefore several techniques have been invented in quan-
tum chemistry to simulated with simplified dynamics. In
[1] the authors first quantum mechanically optimise a
small fragment of DNA in the water environment. Sec-
ond, they ’performed various molecular dynamics (MD)
simulations in explicit water based either fully on the
empirical potential or on more accurate QM/ MM MD
simulations. The molecular dynamics simulations were
performed with an AMBER parm9916 empirical force

∗elisabeth.rieper@quantumlah.org
†janet@qipc.org

field and the following modifications were introduced in
the non-bonded part, which describes the potential en-
ergy of the system (see eq 1) and is divided into the
electrostatic and Lennard-Jones terms. The former term
is modelled by the Coulomb interaction of atomic point-
charges, whereas the latter describes repulsion and dis-
persion energies.’

V (r) =
qiqj

4πǫ0rij
+ 4ǫ

[

(
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rij

)12

−
(

σ

rij

)6
]

(1)

Modifications of the dispersion energy were introduced
by scaling the parameter ǫ. For ǫ = 1 the dynamics
of the DNA strand is normal. For ǫ = 0.01 there is in
increase of 27% in energy in the DNA. This causes the
DNA to unravel from the double helix form to a ladder,
which cannot fulfil its biological function.

Here we want to investigate with a simple model
of DNA whether CV entanglement can be present
at room temperature DNA, and if this entanglement
is connected to the energy of the molecule. We are
aware that there are many technically more advanced
quantum chemically calculations for van der Waals type
interaction, i.e. [12]. The aim of this work is not to
provide the most accurate model (which is due to the
complexity of DNA very difficult anyway), but to give a
model that allows to understand the basic principle of
non-local interaction.

The Model.– We develop a simple model that allows us
to understand the basic features of energy reduction in
large molecules. The nucleic bases adenine, guanine, cy-
tosine and thymine are planar molecules surrounded by π

electron clouds. We model each pair of adenine-thymine
and guanine-cytosine as an immobile positively charged
centre and the outer electron cloud free to move around
its equilibrium position, see fig. 1. As the charges bal-
ance, there is no permanent dipole moment. When the
centre of the negative charges does not coincide with the
positive centre, there is however a non-permanent dipole
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FIG. 1: This graphic shows a sketch of a DNA nucleid acid
base pair. The mostly planar molecules are divided into
the positively charged molecule core (red) and the negatively
charged outer π electron cloud (blue-yellow). In equilibrium
the centre of both parts coincide, thus there is no permanent
dipole. If the electron cloud oscillates around the core, a non
permanent dipole is created [17]. The deviation out of equi-
librium is denoted by (x, y, z). The corresponding dipole is
~µ = Q(x, y, z). This oscillation might be caused by an exter-
nal field, or via van der Waals interaction with another non
permanent dipole, as it is given in a DNA strand.

moment. We denote the displacement of the two centres
by (x, y, z). We also assume the deviation out of equi-
librium |(x, y, z)| to be small compared to the distance
r between nearest neighbours in chain. Each base pair
is described by a harmonic oscillator with trapping po-
tential Ω. The DNA strand is treated like a chain of
harmonic oscillators, see fig. 2. Two neighbouring base
pairs at distance r have dipole-dipole interaction.
In the following we will use the Hamiltonian

H =

N
∑

j,d=x,y,z

(

p2j,d

2m
+

mΩ2
d

2
d2j + Vdip−dip

)

(2)

where d denotes the dimensional degree of freedom, and
the dipole potential

Vdip−dip =
√
ǫ

1

4πǫ0r3
(3(~µj~rN )(~µj+1~rN )− ~µj~µj+1) (3)

with ~µj = Q(x, y, z) dipole vector of of site j and ~rN
normalised distance vector between site j and j+1. Due
to symmetry ~rN is independent of j. The dimensionless
scaling factor ǫ has a identical role like in [1]. In order
to compare our model with [1], we will look at normal
interaction ǫ = 1 and scaled interaction ǫ = 0.01. The
distance between neighbouring sites in DNA is usually
around r0 = 4.5Å. For generality we will not fix the dis-
tance.
Due to the double helix form the dipole potential has
coupling terms of the form xz etc. Detailed analysis fol-
lowing [13] shows that the energy contribution form the
cross coupling terms is small, hence they will be ignored
here. This leads to the interaction term

Vdip−dip =
√
ǫ

Q2

4πǫ0r3
(−xjxj+1 − yjyj+1 + 2zjzj+1) .

(4)

z
y

x

FIG. 2: This graphic shows a sketch of a DNA strand. The
chain is along z direction. Each bar in the double helix rep-
resents one DNA base pair, either adenine-thymine (AT) or
guanine-cytosine (GC). The inset shows two simplified GC
pairs. Around the core of atoms is the blue outer electron
cloud. The oscillation of these electron clouds is modelled
here as non-permanent harmonic dipoles, which are depicted
by the black arrows.

The different signs for x, y and z reflect the orientation
of the chain along z direction.
A discrete Fourier transformation of the form

dj =
1√
N

N
∑

l=1

ei
2π
N

jld̃l

pj,d =
1√
N

N
∑

l=1

e−i 2π
N

jlp̃l,d (5)

decouples the system into independent phonon modes.
These modes can be diagonolized by introducing creation

ad,l =
√

mΩd

2~

(

d̃+ i
mΩd

p̃l,d

)

and annihilation operator

a
†
d,l. This results in the dispersion relations

ω2
xl = Ω2

x + 2

(

2 sin2
(

πl

N

)

− 1

) √
ǫQ2

4πǫ0r3m
(6)

ω2
yl = Ω2

y + 2

(

2 sin2
(

πl

N

)

− 1

) √
ǫQ2

4πǫ0r3m
(7)

ω2
zl = Ω2

z + 4

(

2 cos2
(

πl

N

)

− 1

) √
ǫQ2

4πǫ0r3m
(8)
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and the Hamiltonian in diagonal form

H =
N
∑

l=1,d=x,y,z

(

~ωdl

(

nd,l +
1

2

))

, (9)

where nd,l = a
†
d,lad,l is the number operator of mode l

in direction d. The trapping potentials Ωd can be linked
to experimental data (see table I) through the relation

Ωd =
√

Q2

meαd
, where αd is the polarizability of the nu-

cleid base. Although the values for the four bases differ,

TABLE I: Numerical values for polarizability of different nu-
cleid acid bases [18] in units of 1au = 0.164 · 10−40Fm2.
The trapping frequencies are calculated using the formula

Ω =
√

Q2

meα
and are given in units of 1015 1

s
.

nucleid acid αx αy αz Ωx Ωy Ωz

adenine 102.5 114.0 49.6 4.1 3.9 6.0

cytosine 78.8 107.1 44.2 4.7 4.1 6.3

guanine 108.7 124.8 51.2 4.0 3.8 5.9

thymine 80.7 101.7 45.9 4.7 4.2 6.2

all of them show roughly twice as large polarizabilities
in x, y direction, i.e. transverse to the direction of the
chain. In the following we will approximate the chain to
have the same value of trapping potential at each site.
In x, y direction we will use Ωx,y = 4 · 1015 1

s
, and in z

direction Ωz = 6 · 1015 1
s
. Here we assumed the number

of involved electrons to be one. Although the value of Ωd

changes for more electrons, both the entanglement and
the energy ratio of entangled over separable state stays
invariant. As the involved frequencies are in the optical
range, the system is effectively in the ground state.
Entanglement and Energy.–

Clearly the chain of coupled harmonic oscillator is en-
tangled at zero temperature, but is it possible to have
entanglement at room temperature? There is an easy
to calculate criterion for nearest neighbour entanglement
for harmonic chains [14], which compares the temper-
ature with the coupling strength between neighbouring
sites. In general, for 2kBT

~ω
< 1 one can expect entan-

glement to exist. Here the coupling strength is given

by ω =
√√

ǫ Q2

4πǫ0mr3
≈ 1.6 · 1015 1

s
for r = 4.5Å, which

leads to 2kB300K
~ω

= 0.05 for ǫ = 1 and 0.16 for ǫ = 0.01.
The coupling is dominant compared to the temperature,
which explains the existence of room temperature entan-
glement. In the next step we are going to quantify the
amount of entanglement. For Gaussian states there is an
easy to compute entanglement criteria, namely the pos-
itivity of the reduced covarianz matrix of a state [15].

0 ≤ S1,2 =
1

~2

〈

(dj ± dj+1)
2
〉 〈

(pd,j ∓ pd,j+1)
2
〉

−1 (10)
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FIG. 3: This graphic shows the nearest neighbour negativity
as a function of distance between sites in Å at T = 300K. The
three upper curves are for scaling factor ǫ = 1, the lower two
curves are for scaling factor ǫ = 0.01. The red curve is for z
direction and Ωz = 6·1015 1

s
. The blue and green curve are for

x direction and Ωx = 4 · 1015 1

s
and Ωx = 3 · 1015 1

s
. The lower

value of trapping potential has a higher value of negativity,
but the chain also becomes unstable for small values of r. The
negativity for ǫ = 0.01 is much smaller than in the unscaled
case. This has consequences for the energy saving, see Fig. 4.
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FIG. 4: This graphic shows the ratio of energy of entangled
state over separable thermal state dependant on the nearest
neighbour distance r in Å. The same colour coding like in
Fig. 3 applies. All curves are for ǫ = 1.

with dj position operator of site j in direction d and pd,j
corresponding momentum operator. If the inequality is
violated, the sites j and j+1 are entangled.The negativ-
ity, a widely used measure for entanglement, is calculated
using the formula N =

∑2
k=1 max

[

0,− ln
√
Sk + 1

]

. The
results are shown in Fig. 3.

The amount of negativity strongly depends on the dis-
tance r between sites and the value of trapping poten-
tial Ω. The lower the potential, the higher the nega-
tivity. For the scaled interaction the chain is still en-
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tangled, but the amount of negativity can be neglected.
Interestingly, along the chain the S1 criterion is violated,
whereas transversal to the chain S2 is violated. This re-
flects the geometry of the chain. Along the main axes
of the chain energy is reduced by correlated movement.
Transversal to the chain it is energetically better to be
anti-correlated.

Now we are going to compare the energy per site
of an entangled state with a separable one. As the
effective temperature is very low for the chain, we
restrict our analysis to the ground state. The energy of
the ground state for the degree of freedom d = x, y, z is
given by Ed,ent = 〈Hd〉 =

∑N

l=1
~ωdl

2N . For a separable
state of the system expectation values take the form
〈djdj+1〉 = 〈dj〉〈dj+1〉. For a thermal state the lower
bound of this expectation value is zero. This is equiv-
alent to identical dispersion relation for each phonon
mode (or, similarly, the loss of dispersion energy). Hence
the energy per site for a thermal separable state is just
given by Ed,sep = ~Ωd

2 . Fig. 4 shows the ratio of

energy of entangled over separable states,
Ed,ent

Ed,sep
. For

r = 4.5Å the energy reduction is around 1% in both
x, y and z direction. This clearly does not fully account
for the reported energy increase of 27% per base pair.
One shortcoming of this simple model is that it rather
describes a single strand of DNA, which means that
only 13.5% energy increase are to be expected. Fig. 4
also shows that the exact amount of energy reduction
compared to the separable state is very sensitive to
the value of the trapping potential Ω. In case the real
potentials vary slightly from the values we used, the
energy will also change.

Comparison with non-thermal correlations.– The
above considerations compare the energy of an entan-
gled state with a separable thermal state. If the separa-
ble state is not thermal, conclusions might change [16].
Here we want to investigate one class of models having
classical correlations. We include a local driving force
Fj to each site j to the Hamiltonian. This driving will
induce a dipole at each site. We restrict ourselves to the
x direction, but similar arguments also hold in y and z

dimension. In the first step we solve the dynamics for a
single harmonic oscillator with driving and look at the
energy increase due to driving. In the second step we
compare this local energy change with the interaction
energy of two neighbouring sites.
The effective local Hamiltonian looks like

Hj,eff =
p2j,x

2m
+

mΩ2
x

2
x2
j + Fj(t)xj (11)

Second quantization leads to

H = ~Ωx

(

a†a+
1

2

)

+ F (t)

√

~

2mΩx

(a+ a†) . (12)

The time evolution of this Hamiltonian can be solved
following [19]. If the initial state is the vacuum
state, the solution is a coherent state |α(t)〉 =

U(t)e−
1

2
|α|2 ∑∞

n=0
αn

√
n!
|n〉 with U(t) global phase and pa-

rameter α(t)

α(t) = −i
1√

2~mΩ

∫ t

0

dt′eiΩx(t−t′)F (t′) . (13)

We assume the local force to be of the form
Fj(t) = A cos(ωdrt + φj) with A Amplitude, ωdr

the driving frequency and φj a local phase. For constant
Amplitude A, the closer ωdr to the eigen frequency of
the harmonic oscillator, the larger α.

The driving energy is equal for φ = 0 and φ = π and
given as

F (t)〈x〉 = F (t)

√

~

2mΩx

2Re(α)

=
1

mΩx

A2

Ω2
x − ω2

dr

cos(ωdrt)osc(t) (14)

osc(t) = Ωx (cos(ωdrt)− cos(Ωxt)) . (15)

This term both takes positive and negative values.
For our special choice of driving the time average is

limT−>∞
1
T

∫ T

0 cos(ωdrt)osc(t)dt =
Ωx

2 .
Due to the driving the system heats up, which is shown

in an increase of mean excitation 〈n〉. The time average
is given by

〈n〉 = |α(t)|2 =
A2

2~mΩx

(3Ω2
x + ω2

dr)

2(Ω2
x − ω2

dr)
2
. (16)

For the dipole energy we set φj = 0 and φj+1 = π

By this choice of phases we have αj = −αj+1. This
ensures that the two neighbouring dipoles are perfectly
anti-correlated and the energy is

Edip−dip =
Q2

4πǫ0r3
〈xj〉〈xj+1〉 (17)

=
Q2

4πǫ0r3
~

2mΩx

2Re(αj)2Re(αj+1)

= − Q2

4πǫ0r3
1

m2Ω2
x

(

A

Ω2
x − ω2

dr

osc(t)

)2

.

This term can always be chosen to be negative, and os-
cillates between its extreme values Emin ≤ Edip−dip ≤ 0.
Careful comparison of eq. 14, 16 and 17 shows that the

induced heating due to driving is, except for very small
distances, larger than the dipole-dipole energy reduction.
This means that the non-equilibrium states considered
here are not able to reduce the systems energy.
Discussion.– The system under study has continuos

interaction between neighbouring sites. Therefore one
might say the existence of entanglement is a triviality.
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This is not the case for several reasons. Many systems
are separable despite having continuos interaction. In our
case, for long distances r > 10Å the system becomes al-
most separable. Also, the amount of entanglement, here
measured by the negativity, could be vanishing small. If
the interaction is reduced by setting ǫ = 0.01, the system
stays entangled, but with a vanishing amount of entan-
glement and the energy increases. Therefore, a high value
of negativity goes along with small energy in this system.
This can be explained as follows. The coupling creates

phonon modes, in which the movement of individual sites
becomes correlated. The entanglement between sites
allows these correlations to be in superposition states.
Each site simultaneously oscillates in opposite directions.
Because of the superposition states the oscillation of sites
are correlated without net movement. Any classical cor-
relation in oscillation will need to go along with net move-
ment. This causes the system to heat up and is thus en-
ergetically less favourable than the quantum correlations.
Outlook. Our work, although it employs the simplest

model possible, has important consequences. Firstly, it
shows another counterexample to the believe that living
systems are too hot and wet to sustain coherence and
entanglement. The DNA base pairs are spatially sepa-
rated and therefore form well defined subsystems. Due
to the large trapping frequencies the system’s state is
well approximated by the ground state, which contains
entanglement. Secondly, it shows why certain numeri-
cal procedures like self-consistent charges density-fitting
tight binding (SCC-DFTB), which does not cover disper-
sion energies, do not correctly describe the system’s en-
ergy. Any local approach must fail if the system inhibits
large amounts of entanglement. Quantum information
has developed numerical tools like the matrix product
states [20], which might improve the numerical work in
quantum chemistry. Finally, it opens the field of discus-
sion for possible consequences for the information content
of DNA. What is the influence of entanglement for the
readout of DNA? Is there any way to harness this entan-
glement?
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