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Materials and Methods 
Phase II clinical trial of everolimus 

Forty-five patients with progressive metastatic urothelial carcinoma were enrolled in 
an open-label, single-arm, non-randomized phase II study of the mTORC1 inhibitor 
everolimus (RAD001) from 02/2009-11/2010 (ClinicalTrials.gov number 
NCT00805129). Thirty-seven patients received everolimus for sufficient duration (dose 
of 10mg orally once daily) to be evaluable for the primary endpoint of 2-month 
progression-free survival. The median progression-free and overall survivals were 3.3 
months (95% CI 2.7, 3.7) and 9.8 months (95% CI 7.8, 15.2), respectively.  In addition to 
the index case studied here, one patient exhibited a partial response of 5.9 months in 
duration, while the remainder of the participants had stable disease or disease progression 
as best response. Based on the trial’s pre-specified statistical design, everolimus was 
deemed inactive as a single agent and further development of everolimus in this disease 
was thus in doubt. 
 
Sample preparation, sequencing, and analysis 

Tumor tissue was collected after obtaining consent under an IRB-approved tissue 
acquisition protocol (89-076).  DNA was extracted from tissue samples or blood using 
the Qiagen DNEasy Blood and Tissue Extraction Kit and Ficoll-PaqueTM. All samples 
were macro-dissected to ensure >70% tumor content.  For the 96-tumor set, all exons of 
TSC1 and NF2 were sequenced using Sanger biochemistry.  

 
The complete genomes of the tumor and matched normal samples were sequenced 

from 2x100bp libraries to ~40-fold haploid coverage using Illumina HiSeq 
instrumentation following manufacturer’s protocols (Illumina, San Diego, CA) and 
aligned to build hg19 of the NCBI reference genome assembly using the CASAVA 
pipeline. Aligned reads were processed with Picard tools (Fennel T. et al.; 
http://picard.sourceforge.net/) and the Genome Analysis Toolkit pipeline (GATK) (5, 6). 
Duplicate reads in individual BAM files (7) were marked and removed. Multiple 
sequence realignment was performed for reads spanning candidate small insertions and 
deletions (indels) to correct likely misalignments, after which we performed base quality 
re-calibration (5). Somatic point mutations were detected with MuTect (March 2011 beta 
release), a Bayesian framework described elsewhere [refs (8–11) and 
https://confluence.broadinstitute.org/display/CGATools/MuTect]. A total of 
2,758,394,298bp qualified as sufficiently covered for variant detection (89.1% of genome 
sequence), and from which mutation rates were determined. Indels were identified with 
the UnifiedGenotyper (GATK v1.0.5506) (5) from only bases called and reads aligned 
with a minimum quality score of 20. Somatic indels were those identified as variant in the 
tumor, genotyped as wild-type in the matched normal, and from a minimum read count 
identical to that of single-nucleotide variant detection (14 and 8 reads in the tumor and 
normal respectively). Only somatic and germline variants of >10% variant frequency were 
retained, excluding those present in 1000 genomes (12) or dbSNP130 not including the 
overlap with COSMIC release 47 (13). Indels were also excluded if they: (i) had 
excessive strand bias or were (ii) from regions of the genome with poor or zero mapping 
quality, or were (iii) those associated with a homopolymer run of >5bp. All remaining 
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somatic mutations were annotated for their sequence context and their effect on protein 
function was assessed computationally (14). 

 
Structural rearrangements were detected with the Geometric Analysis of Structural 

Variants algorithm (GASV) (15). Candidate somatic rearrangements were retained if 
supported by >3 atypically paired reads in the tumor sample that was lacking from the 
matched normal genome after excluding clusters of reads where either pair aligned with a 
quality <132 (threshold derived from the shoulder of the empirical distribution of 
mapping qualities from the Illumina pipeline). Rearrangements were annotated (one or 
both breakpoints) for overlap with known sequence gaps, copy number variants (CNVs) 
in normal human populations, low-complexity/repeat structure, their intrinsic copy 
number (see below), their position in the footprint of protein-coding or non-coding genes 
genome-wide, and all were manually reviewed to exclude unfiltered alignment artifacts. 

 
DNA copy number alterations (CNA) were determined from both whole-genome 

sequence data and Agilent array comparative genomic hybridization (aCGH) data. Copy 
number segmentation of sequence data was performed with seqCBS (with the exact 
Binomial likelihood statistic and default parameters) (16). For aCGH analysis, tumor 
DNA was co-hybridized with a pooled reference DNA to Agilent 1M aCGH arrays 
according to the manufacturer’s instructions (Agilent Technologies, Wilmington, DE). 
Raw data were normalized and probe-level data were segmented with Circular Binary 
Segmentation and analyzed with RAE, all as previously described (11, 17–19). 
 
Targeted exon sequencing 

All protein-coding exons of 204 genes were sequenced in DNAs extracted from five 
frozen TSC1-mutant bladder tumors and genetically matched normal FFPE bladder tissue. 
In total, 250ng of DNA per sample were sheared for 300 seconds (Covaris; duty cycle = 
10%, intensity = 5, cycles/burst = 200), and barcoded libraries were prepared using the 
TruSeq DNA Prep Kit (Illumina). An equimolar pool of the barcoded libraries was 
created and 1200ng was input to exon capture using the SureSelect Target Enrichment 
Kit (Agilent) with custom probes designed to target the coding exons of 204 genes. 
Capture by hybridization was performed according to the manufacturer’s protocols with 
two exceptions: (A) we added to the hybridization reaction 600 picomoles of a pool of 
blocker oligonucleotides designed to be complementary to the barcoded Illumina 
adapters, and (B) we used PCR primers corresponding to the common flanking sequence 
of the Illumina adapters for the post-capture PCR reaction. The pooled capture library 
was quantified by Qubit (Invitrogen) and Bioanalyzer (Agilent) and sequenced in an 
Illumina HiSeq 2000 as 2x75bp reads. The resulting mean non-duplicate on-target 
coverage was 368-fold. Somatic mutations and indels were called using MuTect and 
GATK (described above). Variants observed in multiple distinct reads were considered to 
be somatic if they occurred in <1% of all sequence reads within matching normal tissue. 

 
To validate the utility of the exon capture and deep sequencing method using 

FFPE derived DNA, we compared the results obtained using matched frozen and 
FFPE material from 6 patients, all with TSC1-mutant tumors (Figs. S1B and C).  We 
observed 97% concordance among mutation calls in tumors where both matched frozen 



 
 

and FFPE material were sequenced. The discordant 3% of mutation calls were present in 
the frozen tumors but at a lower allele frequency, likely indicative of intratumoral 
heterogeneity. We found no evidence that FFPE tumors produced an excess of false 
positive mutations by this approach.  

 
Using an expanded 230 gene version of the exon capture and sequencing assay, we 

then analyzed 14 patients on the everolimus study with DNA extracted from FFPE-based 
bladder tumor tissue. Barcoded libraries were prepared as above and captured in two 
pools (mean non-duplicate on-target coverage was 326-fold). Variants present in the 1000 
genomes project or dbSNP130 excluding overlap with the COSMIC database were 
filtered out as likely germline. Novel sequence variants in TSC1 were validated and 
confirmed to be somatic by Sanger sequencing of tumor and normal DNA. 
 
NF2 knockdown in TSC1-null bladder cancer cells 

We hypothesized that inactivation of NF2, while rare in bladder cancers, may act in 
concert with TSC1 loss to further potentiate this patient’s mTORC1 dependence. Indeed, 
prior studies have shown that NF2 loss enhances mTORC1 signaling and rapamycin 
sensitivity, through a PI3K-independent mechanism (20). We therefore performed short 
hairpin RNA (shRNA)-mediated knockdown of NF2 in the TSC1-null human bladder 
cancer cell line RT-4 (a generous gift from M. Knowles, Cancer Research UK Clinical 
Centre, Leeds, United Kingdom) using either pLKO.1 plasmids (clone 
TRCN0000039977) encoding shRNAs targeting NF2/merlin (Open Biosystems) or 
control shRNAs encoding a scrambled sequence (SHC002, Sigma-Aldrich). 293FT cells 
(Invitrogen) were transfected with the shRNA constructs as previously described (2) to 
generate viral supernatants followed by infection of TSC1-null RT-4 cells.  Following 
puromycin selection, stably infected RT-4 cells were lysed and subjected to immunoblot 
analysis as previously described (21).  Potent knockdown of NF2 expression with 
shRNA, but not scrambled control, resulted in enhanced sensitivity to the mTORC1 
inhibitor rapamycin (see Figs. S1D and E).   
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Fig. S1. 
TSC1 mutations identified in the primary tumor of the index patient (red) and the 96-
tumor validation cohort (black); domain structures are as indicated.  B. The screening of 
five bladder tumors harboring TSC1 mutations using the exon capture assay identified a 
complex pattern of co-mutated genes. Genes mutated in two or more cases are shown. C. 
A somatic mutation in TSC1 (Y185*) was detected at comparable variant frequencies 
with high coverage in both frozen and FFPE tumors from the exon capture assay. D. 
Expression profile by immunoblotting (top) of TSC1, NF2, phospho-S6 Ser240/244, and 
total S6 in a panel of bladder cancer cell lines (red: TSC1-mutant cell lines). Beneath are 
immunoblots of p-S6 Ser240/244 and total S6 from whole cell lysates of TSC1-null RT-4 
cells following treatment with 1nM rapamycin for 0 to 24 hrs. At bottom, the difference 
in cell count (RT-4) after 5 days of rapamycin at increasing concentrations is compared to 
control (DMSO). E. NF2/merlin knockdown following infection with short-hairpin 
lentiviral vectors (top) targeting NF2 (shNF2) or scrambled control (shSCR) in TSC1-
null RT-4 cells. Growth is quantified after treatment with DMSO or 0.5nM rapamycin for 



 
 

5 days (bottom; mean ± S.E. of n>4 experiments; p-values: unpaired two-tailed Student’s 
t-test). This experiment was repeated with a second shRNA targeting NF2 with 
comparable results (data not shown). 
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