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Abstract

Background: In spite of extensive research on the effect of mutation and selection on codon usage, a general model of
codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content
changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated
with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally
increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-
changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show
different usage patterns.

Principal Findings: In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we
find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage
that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with
increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of
GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous
substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in
isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in
prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68%
of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions: The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage,
quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon
bias may be measured.
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Introduction

Codon bias, the unequal usage of synonymous codons, varies

widely between species and, in some cases, between different

regions of a genome in a single species [1]. Factors influencing

codon bias include selection for translational accuracy and

efficiency [2–6] and GC bias, on a genomic level in prokaryotes

[7] and on a regional or isochoric level in vertebrates [8].

The influence of GC bias is a major influence on codon bias both

in human [9] and prokaryotic genomes [7], resulting in a close

association between GC% at the third codon position, also called

GC3 [10] and GC bias (genomic GC% in prokaryotes or isochoric

GC% in mammals). As all amino acids (with the exception

methionine and tryptophan) allow GC-changing synonymous

substitutions in the third position, this has led to a common belief

that the use of synonymous G/C-ending codons should increase in

frequency with increasing GC bias, while usage of A/T-ending

codons should decrease [11]. Though this is a reasonable

assumption for the codons of most amino acids, those that allow

GC-changing synonymous substitutions in the first and third codon

positions, arginine and leucine, may be expected to act differently.

In particular, those codons which have one A or T and one G or C

in the first and third synonymous positions will have a conflicted

response to GC bias; this effect has not previously been modeled.

The recent rapid growth in the availability of both partial and

full genomic sequences has allowed for broad studies of codon

usage subject to GC bias across large numbers of species.

Hershberg & Petrov [12] identified favored codons in prokaryotes

and fungi and showed that they are strongly related to the species’

intergenic GC content. Knight et al. [13] modeled codon and

amino acid usage as a function of GC mutational bias in bacteria,

prokaryotes and eukaryotes showing that GC content drives codon

and amino acid usage and provide a model of usage by

compositional class, but did not directly address codon bias.

In this paper we generate a continuous-time Markov chain

model of codon bias as a function of imposed GC bias for all
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amino acids. We test the model by comparing it with codon bias

for prokaryote and plant genomes and the genes of the human

genome. Finally we discuss possible causes for observed variations

from the model.

Results

General patterns of codon usage
Figure 1A displays heatmaps of the correlation coefficients

between codon usage and GC bias (across species for prokaryotes

and plants, and across genes for human). In all three analyses, the

usage of nearly all G- and C-ending codons is strongly positively

correlated with GC bias, and conversely for A- and T-ending

codons. However, two G-ending codons, AGG (arginine) and

TTG (leucine), defy this overall trend consistently across the three

different groups of data by showing a negative correlation between

usage and GC bias. Two other arginine codons, CGA and CGT,

display the expected negative correlation, but the correlation is

very weak.

Looking at the usages of individual codons in more detail,

we find additional mysteries. For many codons, usage is well

modeled as a linear function of GC bias. For example, Figure 1B

Figure 1. Relationships between codon usage and GC3. (A) Heat maps of correlation values for codon usage vs GC3 for bacteria and plant
genomes and human genes. The color and intensity indicates type and degree of correlation: red indicates positive, green negative. Black fields are
stop and non-degenerate codons (tryptophane and methionine). AGG and TTG are the only G/C-ending codons having negative correlation with
GC3. (B) Codon usage frequency for the asparagine codon AAC (linear). Red, green and blue points and lines are, respectively, bacterial, plant and
human scatter plots and LOESS fits of codon usage frequency versus GC3. This is also the case for Figures 1C and 1D. (C) Codon usage frequency for
the arginine codon AGA (nonlinear, but monotone). (D) Codon usage frequency for the leucine codon TTG (nonlinear and non-monotone).
doi:10.1371/journal.pone.0013431.g001
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shows a scatter plot of the usages of the AAC asparagine codon

versus GC bias for prokaryote and plant genomes as well as

human genes. However, other codons show distinctly nonlinear

usage profiles. For example, the arginine codon AGA shows a

nonlinear upwardly curving usage as a function of GC bias

(Figure 1C) particularly among prokaryotes. The leucine codon

TTG, shows a non-monotone usage pattern in this case, with

peak usage occurring in genomes with nearly neutral GC bias

(Figure 1D).

We used the Harvey-Collier test to assess the null hypothesis of

linear usage for all codons (see Figure 2). The test shows that a

large number of codons exhibit some degree of nonlinear usage in

prokaryotes as a function of GC bias, though this may be

influenced by violation of the constant-variance assumption made

Figure 2. Graph of Harvey-Collier test statistic for codon bias as a function of GC3 for prokaryotes, ordered by decreasing
magnitude. Low values indicate linearity, high values indicate nonlinearity. * and ** indicate codons that our model predicts to be nonlinear and
nonlinear, non-monotone respectively.
doi:10.1371/journal.pone.0013431.g002
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by the test or by the large number of data points involved.

However, a number of codons, particularly belonging to leucine,

isoleucine and arginine, show very strong deviations from linearity.

We hypothesized that the unusual responses of these isoleucine,

arginine and leucine codons may result from the structure of

possible synonymous single site substitutions within these amino

acids (Figure 3). Notably, arginine and leucine are the only amino

acids that allow GC-changing synonymous substitutions in the first

as well as the third position (Figure 3C). Isoleucine is the only

amino acid with three codons and unequal numbers of G/C- and

A/T-ending codons (Figure 3B). The remainder of the amino

acids have equal numbers of A/T and G/C-ending codons and

only allow GC-changing synonymous substitutions in the 3rd

codon position. The usage of these codons is in many cases linear,

or at least much closer to linear than shown by many of the

leucine, isoleucine and arginine codons.

A Model for Codon Usage Based on Synonymous
Mutations

We propose a continuous-time Markov chain model of codon

evolution under point mutations that explains the observations

above. We assume that no non-synonymous mutations are

allowed, so that all variation in usage is due to synonymous

mutations. Though there are mechanisms by which synonymous

mutation may affect protein function, they are more likely to be

effectively neutral than non-synonymous mutations [14]. Using

this simplifying assumption, we are able to explain the major

Figure 3. Networks of synonymous single site substitutions for all amino acids. GC increasing substitutions are indicated with an arrow. GC
preserving substitutions are represented by a line. For amino acids with 2 and 4 codons as well as serine, G/C-ending codons are pink, and A/T-
ending codons green. For arginine and leucine, codons with G/C in both synonymous positions (26GC codons) are red, those with only one G/C in a
synonymous position (16GC) are grey, and those with A/T in both synonymous positions (06GC) are green. (A) Amino acids whose codons are
predicted to have a linear response to GC mutational bias. (B) Isoleucine, whose codons are predicted to have a nonlinear but monotone response to
GC mutational bias. (C) Arginine and leucine, whose codons are predicted to have nonlinear, and in some cases non-monotone, responses to GC
mutational bias.
doi:10.1371/journal.pone.0013431.g003
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patterns of codons used without recourse to the added complexity

of including non-synonymous mutations.

Consider the codons relating to any particular amino acid. For

any two codons X and Y that differ by a single nucleotide, we

assume that the rates of mutation from X to Y and from Y to X

are the same if both codons have the same total number of Gs and

Cs (RXY ~RYX ). If, however, Y has one more G or C than X ,

then we assume that mutation from X to Y happens at K times

the rate of mutation from Y to X (RXY ~KRYX ). Here, K is

related to the GC bias (B) as K~B=(1{B). B ranges from total

A/T bias to total G/C bias (0vBv1). Finally, we assume that the

usages of the codons of each amino acid, in a set of genes or a

genome, are equal to the equilibrium frequencies of those codons

under the model. Letting ½X � and ½Y � denote the usages of codons

X and Y , then ½X �RXY = ½Y �RYX .

From the continuous-time Markov chain models for every

amino acid except serine, one can solve for the equilibrium usage

of all codons, as a function of GC bias B, based on the set of

possible synonymous single site mutations for each amino acid

(Figure 3). The equilibrium solutions are summarized in Table 1.

Importantly, the predicted equilibrium usages of every codon

depend only on the GC bias. They are not affected, for example,

by differering transition and transversion mutation rates; as long as

the rates are non-zero the equilibrium solutions are the same. Nor

are there any free parameters of the model that need to be

determined from the data, except, of course, for the GC bias itself.

Serine raises a small problem for our model in that it is the only

amino acid that consists of disconnected blocks of codons—one set of

four codons and another of two codons—which cannot be reached

from each other by any combination of synonymous point mutations.

As a consequence, the model can only explain the usages of the TCA,

TCC, TCG and TCT codons with respect to each other, and of the

AGC and AGT codons with respect to each other. The relative

usages of the first four compared to the last two is beyond the scope of

our model. For the remainder of this article, we will treat the four TC-

beginning codons as if they belong to a single amino acid, which we

call serine4, and the two AG-beginning codons as if they belong to a

different amino acid, which we denote serine2. Implicitly, this means

that we redefine the usage of each TC-beginning codon as its number

of occurrences by the total number of occurrences of TC-beginning

codons, and likewise for the AG-beginning codons.

Linear Usage Predicted for all 2-Codon and 4-Codon
Amino Acids

For all the two-codon and four-codon amino acids, including the

serine2 and serine4 groups, the model predicts codon usage that is

linearly increasing or decreasing in GC bias, B, depending on

whether the codon ends with an A/T or with a G/C. Consider first

the two-codon amino acids. Each has one A/T-ending codon,

which we will denote by X , and one G/C-ending codon, which we

will denote by Y . Because Y has one more G/C than X , the model

asserts that the mutation rates satisfy RXY~KRYX . At equilibrium,

the flux from X to Y must match the flux from Y to X :

½X �RXY ~½Y �RYX ~½Y �K{1RXY[K ½X �~½Y �

The equilibrium frequencies must also sum to one, so we have:

½X �z½Y �~1

Combining these two equalities, and recalling that K~B=(1{B)
we can solve for the frequencies of X and Y :

½X �~ 1

1zK
~1{B ½Y �~B

As one would expect, usage of the A/T-ending codon decreases

linearly with increasing GC bias, with 0% usage in completely GC-

biased situations (B~1) and 100% usage in completely AT-biased

situations (B~0). The opposite holds for the G/C-ending codon.

For a four-codon amino acid, the derivation is similar. The

model’s assertion about mutation rates implies six different

equalities, corresponding to the six possible pairs among the four

codons. Let us focus on three:

RX1X2
~RX2X1

RY1Y2
~RY2Y1

RX1Y1
~KRY1X1

The remaining three relationships turn out to be redundant with

these three, as the reader can easily verify. At equilibrium, the

balance of fluxes imply that:

½X1�RX1X2
~½X2�RX2X1

[½X1�~½X2�

½Y1�RY1Y2
~½Y2�RY2Y1

[½Y1�~½Y2�

½X1�RX1Y1
~½Y1�RY1X1

~½Y1�K{1RX1Y1
[K ½X1�~½Y2�

Combining these with the fact that the frequencies sum to one,

½X1�z½X2�z½Y1�z½Y2�~1, we can solve to obtain:

½X1�~½X2�~
1

2
{

1

2
B ½Y1�~½Y2�~

1

2
B

The usages of the A/T-ending codons are predicted to be exactly

half of the usage of a single A/T-ending codon in a two-codon

amino acid, and likewise for the G/C-ending codons.

Figure 4 shows example codon usages for asparagine, a two-

codon amino acid, and alanine, a four-codon amino acid in the

Table 1. Equilibrium solutions for codon frequencies.

Amino acid/class Codon Frequency

Two-codon {{A or {{T 1{B

{{C or {{G B

Four-codon {{A and {{T 1{B

2

{{C and {{G B

2

Isoleucine ATA and ATT 1{B

2{B

ATC B

2{B

Arginine/Leucine AGA and TTA (1{B)2

1zB

CGA, CGT, AGG, B(1{B)

1zB

CTA, CTT and TTG

CGG, CGC, B2

1zB

CTG and CTC

doi:10.1371/journal.pone.0013431.t001
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prokaryotic data. For asparagine, the model matches the observed

usages with great accuracy. For alanine the overall trends of the A/

T-ending and G/C-ending codons are well-captured, including the

fact that their usages are approximately linear and have half the

slope of the two-codon usages. However, one also observes that in

the most GC-biased situations (B~1), the two G/C-ending codons

do not received precisely one half of the usage. In some species, the

G-ending codon receives more of the usage, while in other species

the C-ending codon receives more usage. This inequality in usage

between the two G/C-ending codons is correlated to their overall

usage. A similar phenomenon occurs with the A/T-ending codons.

Interestingly, for a four-codon amino acid, if one sums the usages of

the two A/T-ending codons and of the two G/C-ending codons,

one obtains usages that very accurately match what one would

expect for a two-codon amino acid.

Nonlinear, but Monotone, Usage Predicted for Isoleucine
Codons

For isoleucine, the derivation is similar, with the notable

difference being the unequal numbers of G/C- and A/T-ending

codons. The synonymous mutation relationships are shown in

Figure 3B. Let ½X �, ½Y �, ½Z� represent the equilibrium frequencies

for the codons ATA, ATT and ATC respectively. Our

assumptions regarding mutation rates imply that RXY ~RYX

and RXZ~KRZX . The flux balance at equilibrium then implies:

½X �RXY ~½Y �RYX[½X �~½Y �

½X �RXZ~½Z�RZX ~½Z�K{1RXZ[K ½X �~½Z�

Using ½X �z½Y �z½Z�~1 and K~B=(B{1), we obtain

½X �~½Y �~ 1

2zK
~

1{B

2{B
½Z�~ B

2{B

The usage curves are shown in Figure 5, along with the prokaryote

data. The predicted and observed usages of ATC match very well

showing positive slope and mild upward curvature. For ATA and

ATT, the observed usages are decreasing in GC bias B,

particularly for B§0:3. For that range of B, the usage curves

Figure 4. Codon usage frequency for asparagine and alanine based on prokaryotic data. The x-axis is genomic GC3 as an estimate of GC
bias, The y-axis is usage frequency. The colored points and lines correspond to the observed codon usage frequencies for a given GC3 and the
corresponding loess fit respectively. The black line is the model prediction. (A) Asparagine AAT codon. (B) Asparagine AAC codon. (C) Alanine GCT
and GCA codons. (D) Alanine GCC and GCG codons. (E) The sum of the GCT + GCA alanine codons. (F) The sum of the GCC + GCG codons.
doi:10.1371/journal.pone.0013431.g004
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also show the downward curvature predicted by the model,

particularly ATT. However, the usage of ATT is approximately

double that of ATA, in contradiction to the model prediction. In

the vicinity of B~0:2, there is a sudden ‘‘correction’’ of the

relative usages, so that for the most A/T-biased species for which

we have data, the usages of both ATT and ATA are

approximately as predicted by the model. Despite these compli-

cated patterns in ATA and ATT usage, as shown in Figure 5C, the

summed usages of ATA and ATT match very well the model’s

prediction for their sum, over the whole range of GC bias and is

notably nonlinear.

Nonlinear, and in Some Cases Nonmonotone, Usage
Predicted for Arginine and Leucine Codons

Arginine and leucine are notable as the only amino acids which

allow synonymous, GC-changing point mutations in both the first

and third codon positions as shown in Figure 3C.

Let ½U �, ½V �, ½W �, ½X �, ½Y � and ½Z� represent the equilibrium

frequencies of the arginine codons AGA, CGA, CGT, AGG,

CGG and CGC respectively or, equivalently, the equilibrium

frequencies of the leucine codons TTA, CTA, CTT, TTG, CTG

and CTC respectively. Our assumptions regarding mutation rates

imply nine different equalities, corresponding to the nine possible

pairs among the nine codons. Only four non-redundant equalities

must be specified: RWV ~RVW , RYZ~RZY , RUX ~KRXU and

RXY ~KRYX . The flux balance at equilibrium then implies:

½V �RVW ~½W �RWV[½V �~½W �

½Y �RYZ~½Z�RZY[½Y �~½Z�

½U �RUX ~½X �RXU~½X �K{1RXU[K½U �~½X �

½X �RXY ~½Y �RYX ~½Y �K{1RYX[K ½X �~½Y �

Substituting the above into ½X �z½Y �z½Z�z½W �z½U �z½V �~1

and solving for U gives:

½U �z3K ½U �z2K2½U �~1[½U �~ 1

1z3Kz2K2

Substituting K~B=(1{B) and solving for codon frequencies

gives:

½U �~ (1{B)2

(1zB)

½V �~½W �~½X �~ B(1{B)

(1zB)

½Y �~½Z�~ B2

(1zB)

For both arginine and leucine, three distinct usage patterns are

predicted, depending on whether a codon has total of zero, one or

two Gs and Cs in the first and third positions, those that can vary

synonymously. We will refer to these codon classes as 06GC,

16GC and 26GC respectively, corresponding to the three

solutions above.

06GC (arginine: Figure 6C, leucine: Figure 6I) and 26GC

(arginine: Figure 6A, leucine: Figure 6G) usage curves are

monotonic and nonlinear decreasing and increasing respectively

with increasing GC3 described by (1{B)2=(1zB) and

B2=(1zB) respectively. 16GC codons (arginine: Figure 6B,

Figure 5. Codon usage frequency for isoleucine based on prokaryotic data. The x-axis is genomic GC3 as an estimate of GC bias, The y-axis
is usage frequency. The colored points and lines correspond to the observed codon usage frequencies for a given GC3 and the corresponding loess
fit respectively. The black line is the model prediction. (A) ATT and ATA codons. (B) ATC codon. (C) The sum of the ATA+ATT codon usages.
doi:10.1371/journal.pone.0013431.g005
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leucine: Figure 6H) show a non-monotone, asymmetric, concave

distribution described by B(1{B)=(1zB) with a peak at

B~
ffiffiffi

2
p

{1&0:41, below neutral bias (B~0:5).

Intuitively, the 16GC codons show peaked usage because when

GC content is low the 06GC codons are strongly favored, and

when GC content is high the 26GC codons are strongly favored.

The asymmetry of the peak position is due to the fact that there

are two 26GC codons in each of arginine and leucine but only

one 06GC codon. The peak position is notable as a correlation of

such a curve over the range of B~½0,1� will be negative, as shown

for AGG (Figure 6B) and TTG (Figure 6H). The negative

correlation is stronger when the data is richer in GC sequences, as

is the case with the human data. This result provides an alternative

interpretation of the observations of Kliman & Bernal [11] who

reported that AGG and TTG codons in human are negatively

correlated with GC3, intronic GC and expression and postulated

that this may be the result of selection on these codons. AGG and

TTG are the two G-ending 16GC codons; their observed usage

frequency patterns are predicted by our model for human as well

as prokaryote and plant genomes.

Figure 6. Codon usage frequency for arginine and leucine based on prokaryotic data. The x-axis is genomic GC3 as an estimate of GC bias,
the y-axis is usage frequency. The colored points and lines correspond to the observed codon usage frequencies for a given GC3 and the
corresponding loess fit respectively. The black line is the model prediction. (A) 26GC arginine codons (those with two G/C in the 1st or 3rd codon
position). (B) 16GC arginine codons (those with one G/C in the 1st or 3rd codon position). (C) The 06GC arginine codon (with no G/C in the 1st or 3rd
codon position). (D) The sum of 26GC arginine codons. (E) The sum of 16GC arginine codons. (F) GC3 for arginine codons. (G) 26GC leucine. (H)
16GC leucine codons. (I) 06GC leucine. (J) The sum of 26GC leucine codons. (K) The sum of 16GC leucine codons. (L) GC3 for leucine codons.
doi:10.1371/journal.pone.0013431.g006
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Discussion

Motivated by some unexpected observation on codon usage, we

have developed a codon usage model based on GC-biased

synonymous point mutations. The model makes a number of

predictions. The most important and notable prediction is that two

G-ending codons (AGG, TTG) will show decreasing usage with

increasing GC bias as indicated by GC3. The second prediction of

our model is that some codon frequencies will be nonlinear and

others linear as a function of GC bias. The third prediction of our

model is that the per-amino acid GC3 should be linear for all

amino acids with the exception of isoleucine.

Our model predictions are most accurate in the prokaryotic

data due to the large number of species in the data set, the fact that

each species’ data point has a high codon counts (at least 50 coding

sequences and usually much more) and they cover a broad range

of GC3 values. The plant data is much more limited, consisting of

fewer genomes covering a narrower range of GC3 values. The

human data as well has a narrower GC3 values than the

prokaryotic data. Though the human data consists of many more

data points, each data point is based on the relatively small

number of codons in a human gene. As a result of this and the

ratios used for codon frequency calculations, there are strong

stochastic effects and the data is quite noisy resulting in lower

prediction accuracy. Despite the limitations of the data, the key

prediction of our model that AGG and TTG should have negative

correlation with respect to GC3 holds true for all the data sets as

clearly shown for prokaryotic, plant and human data in Figure 1A.

Figure 2, which shows the results of the Harvey-Collier test for

linearity, shows that the 8 most nonlinear codons as a function of

GC3 are in the list of 12 that our model predicts to be nonlinear.

While the results for plant and human data are less definitive (see

Table S1 for data and Figures S4, S5 and S6 for human, plant and

prokaryote data respectively), we attribute this to the properties of

those data sets, as described above.

For all of the model solutions except isoleucine, the usages of G/

C-ending codons sum to B, whereas the usages of A/T-ending

codons sum to 1{B. Thus, the observed overall GC bias in the

third codon position is predicted to be followed by each amino

acid individually (see Figures S1, S2 and S3 for human, plant and

prokaryote per-amino acid GC3 vs GC3 graphs respectively).

Indeed, this is true for arginine and leucine as well, though

somewhat surprising due to the nonlinearity of the individual

codon class solutions. Isoleucine, which has an odd number of

codons, is the sole exception, the nonlinear ATC codon usage

B=(2{B) somewhat lower than B (Figure 5B). This property

vindicates the use of K~B=(1{B) in our model to associate the

mutational rate K with the overall GC bias as estimate by GC3.

Some deviations from the model may be indicative of

biologically significant effects; for example GGC and GGG

(glycine) (Figure 2) show usage frequencies well above and below

that of the model respectively in human, prokaryotic and plant

data (see Figure 7 for prokyariotic results, Figures S4 and S5 for

human and plant data). The low usage of GGG has been

previously noted in Drosophila and attributed to avoidance of

guanine runs due to their tendency to form stable mRNA

structures which may impede translation [15]. It appears from our

results that this effect may extend to bacterial, human and plant

codon usage as well.

Many other known influences on codon bias have not been

included in our model. Selection for increased transcriptional

efficiency can be particularly strong in prokaryotes [6] affects

codon usage, and can vary between species. GC skew which is

present in the human genome [16], vertebrate mitochondria in

general [17], prokaryotes [18] and plants [19] can effect codon

bias. Context-specific mutations, where mutations are correlated

with neighboring bases [20] may play a role in some of the

observed deviations. Nearly-neutral non-synonymous mutations

may also play a role: it has been shown that first and second

position base content can vary with third position base content in

metazoan mitochondria [21]. In addition, even if the model

describes equilibrium usage correctly, coding sequences may not

all be at or near the equilibrium state described by the model;

genes having recently been subject to lateral gene transfer may not

yet be in equilibrium with the host genome [22], and recently

duplicated genes may not yet be in equilibrium with the GC bias

of their host isochore. It may be possible to incorporate some of

Figure 7. Codon usage frequency for glycine based on prokaryotic data. The x-axis is genomic GC3 as an estimate of GC bias, the y-axis is
usage frequency. The colored points and lines correspond to the observed codon usage frequencies for a given GC3 and the corresponding loess fit
respectively. The black line is the model prediction. (A) Glycine A/T-ending codon usage. (B) Glycine G/C-ending codon usage. (C) Glycine A/T-ending
codon usage summed. (D) Glycine G/C-ending codon usage summed.
doi:10.1371/journal.pone.0013431.g007
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these effects into future refinements of our model: in particular GC

skew effects should be well suited to modeling using our method,

however its position dependency poses challenges.

Despite the simplicity of this model and lack of fitted

parameters, it broadly captures codon usage trends across multiple

branches of life and for a wide range of GC bias. It accounts for

72% of the variation in codon usage in prokaryotes, 64% in plants

and 52% in humans and predicts the decrease in usage of AGG

and TTG with increasing codon bias. When individual codons are

summed together for a class of solutions (06GC, 16GC and

26GC for arginine and leucine (Figures 6D,E,J,K) and G/C- and

A/T-ending for the other amino acids (Figures 4E,F, 5C, 7C,D))

our model accounts for 87% of variability in class usage across

prokaryotic species, 80% across plant species and 68% across

human genes. Thus the influence of GC bias on codon usage

appears to be felt most strongly at the level of codon classes rather

than the level of individual codons. This effect is puzzling, and it is

not clear why it is the case.

Our model establishes that GC bias is the dominant factor in

determining codon bias across a broad variety of life and that the

form of the influence admits a particularly simple explanation.

This model provides a natural null model for codon bias subject to

GC mutational bias, relative to which further studies of codon

usage may be measured.

Materials and Methods

Codon usage frequencies for prokaryotic and plant species were

downloaded from the CUTG database [23] based on the NCBI

GenBank Flat File Release 160.0 [24]. The CUTG gbbct.spsum

bacterial data set containing both bacterial and archaean species

codon data and the gbpln.spsum plant codon usage data were

used. These records sum the codon usage for all nuclear coding

sequences in GenBank per species. Though species records can

contain duplicated genes, they provide a reasonable estimate of the

genomic codon usage for each species, including those for which

full, annotated genomic sequences are unavailable. For the 196

plant species and 897 prokaryotic species using the standard

genetic code (NCBI genetic code 11) whose entries were based on

50 or more coding sequences (CDS), codon usage frequency per

amino acid was calculated.

v54_36p of the Ensembl [25] human genome database was used

as the source of genomic sequences accessed via the Ensembl Perl

API [26]. For each amino acid, the longest CDS for each of the

20884 protein-coding genes annotated in Ensembl as known

containing at least ten codons for that amino acid were chosen for

the respective analyses.

For graphs using LOESS (locally estimated scatter plot

smoothing) fits, the R 2.10.0 [27] loess function was used to

generate the fit to the data (colored lines on graphs) with default

parameters (span = 1.0, degree = 2, least-squares fitting).

Percent variance from the model was calculated on a per-codon

or per model-class basis by calculating one minus the variance of

the difference between the model and the observations divided by

the variance of the observations. Averages were then generated for

all codons and model classes, each weighted by the number of

codons used in the calculation.

The Harvey-Collier test for functional misspecification [28] as

implemented in the R lmtest package [29] was used to determine

the degree of nonlinearity of codon usage as a function of GC3.

Supporting Information

Figure S1 Human per-amino acid GC3 vs. GC3 graphs.

Found at: doi:10.1371/journal.pone.0013431.s001 (2.00 MB

PDF)

Figure S2 Plant per-amino acid GC3 vs. GC3 graphs.

Found at: doi:10.1371/journal.pone.0013431.s002 (0.10 MB

PDF)

Figure S3 Prokaryote per-amino acid GC3 vs. GC3 graphs.

Found at: doi:10.1371/journal.pone.0013431.s003 (0.22 MB

PDF)

Figure S4 Human per-amino acid codon frequency vs. GC3

graphs.

Found at: doi:10.1371/journal.pone.0013431.s004 (6.69 MB

PDF)

Figure S5 Plant per-amino acid codon frequency vs. GC3

graphs.

Found at: doi:10.1371/journal.pone.0013431.s005 (0.27 MB

PDF)

Figure S6 Prokaryote per-amino acid codon frequency vs. GC3

graphs.

Found at: doi:10.1371/journal.pone.0013431.s006 (0.64 MB

PDF)

Table S1 Tables of codon usage variance from model for human

genes, plant and prokaryote genomes.

Found at: doi:10.1371/journal.pone.0013431.s007 (0.08 MB

XLS)
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