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Analysis of genome-wide codon bias shows that only two param-
eters effectively differentiate the genome-wide codon bias of 100
eubacterial and archaeal organisms. The first parameter correlates
with genome GC content, and the second parameter correlates
with context-dependent nucleotide bias. Both of these parameters
may be calculated from intergenic sequences. Therefore, genome-
wide codon bias in eubacteria and archaea may be predicted from
intergenic sequences that are not translated. When these two
parameters are calculated for genes from nonmammalian eukary-
otic organisms, genes from the same organism again have similar
values, and genome-wide codon bias may also be predicted from
intergenic sequences. In mammals, genes from the same organism
are similar only in the second parameter, because GC content varies
widely among isochores. Our results suggest that, in general,
genome-wide codon bias is determined primarily by mutational
processes that act throughout the genome, and only secondarily by
selective forces acting on translated sequences.

Translation of mRNA to protein is universal, and the genetic
code describing how the 64 nucleotide triplets (codons)

specify 20 amino acids is nearly universal (1). Grantham’s
genome hypothesis proposes that each species systematically
uses certain synonymous codons (codons that code for the same
amino acid) in coding sequences (2–4), in other words, that each
species has a distinct codon bias. Many studies have since
confirmed that, at least in prokaryotes, selective forces acting at
the level of translation maintain biased codon usage (5–7). The
realization that selection may act on gene sequences in the
absence of amino acid changes has had profound implications for
the study of the molecular evolution of genes. In particular,
analysis of codon bias has helped establish that horizontal gene
transfer is a major evolutionary force (8–10).

What causes differences in codon bias and why? Does codon
bias exist (i) because it is necessary for efficient and accurate
protein expression or (ii) because codons, as DNA sequences,
are subject to mutational pressures acting on all the DNA
sequences in a given organism? Explanation i is generally termed
a selective or selectionist explanation for codon bias. In contrast,
explanation ii is referred to as a neutral or mutational explana-
tion. Variation in codon bias among genes from the same
organism has been shown to depend on many parameters,
including expression level (4, 5, 11), amino acid composition
(12–15), gene length (16, 17), mRNA structure (18–20), and
protein level noise considerations (21). In most of these cases,
evidence exists that selection at different steps during protein
expression shapes codon bias. In addition, global forces differ-
entiate the codon bias of genes between different organisms:
species-specific codon bias is strongly correlated with overall
genome percentage GC content (22, 23), genes from organisms
with similar phylogeny or with similar tRNA content have similar
codon bias (22), and an organism’s optimal growth temperature
influences the codon bias of its genes (24). Most of these global
forces are thought to be mutational, acting on all DNA se-
quences, although it has also been argued that growth temper-
ature exerts a selective force on mRNA structure (25) and codon
bias (24). Although both selection and mutation are clearly

important for establishing codon bias, the relative importance of
selection and mutation has been difficult to define in general.

With the recent availability of many complete genome se-
quences, it has become possible to directly analyze the deter-
minants of genome-wide codon bias. Studying genome-wide
codon bias allows us to focus on global forces shaping codon bias.
In this article, we examine the relative importance of mutation
versus selection in shaping genome-wide codon bias.

Because each of the 20 amino acids, on average, is encoded by
three synonymous codons, the space of possible patterns of
codon usage is very large. Here we analyze variation in codon
bias of genes in archaeal and eubacterial organisms. We intro-
duce a method to quantitatively separate within-genome from
between-genome variation in codon bias, and, to analyze global
forces shaping codon bias, we focus on between-genome varia-
tion. We find, consistent with others, that GC content variation
is the most important parameter differentiating codon bias
between different organisms. A key finding in our analysis is that
a combination of nearest-neighbor nucleotide biases is the next
most important parameter differentiating codon bias between
different organisms. We demonstrate that genome-wide codon
bias in prokaryotic genomes may be predicted with surprising
accuracy by using only intergenic sequence statistics, which are
unaffected by selective forces acting during protein expression.
Furthermore, we find that the codon bias of genes from several
nonmammalian eukaryotes is also characterized by genome GC
content and nearest-neighbor nucleotide biases. We conclude
that genome-wide codon bias can be well characterized by only
two parameters, which are determined predominantly by
genome-wide mutational forces rather than by coding-region-
specific selective forces in all three domains of life.

Materials and Methods
Data Sources. All genome sequences are from GenBank (ftp:��
ftp.ncbi.nih.gov). A list of genome sequences used is in Data Set
1, which is published as supporting information on the PNAS
web site. Some eukaryotic sequences were taken from the
RefSeq project (www.ncbi.nlm.nih.gov�RefSeq) on June 5, 2003;
only sequences marked ‘‘provisional,’’ ‘‘reviewed,’’ or ‘‘vali-
dated’’ were used. Genome sequence processing was done with
PERL (www.perl.com) with the genome-tools (http:��genome-
tools.sourceforge.net) (26) and PDL packages (http:��
pdl.perl.org) by using ad hoc scripts on DEBIAN GNU�LINUX 3.0
(www.debian.org and www.gnu.org). Growth temperature data
were taken from the recommended culture conditions of Amer-
ican Type Culture Collection (www.atcc.org) or from ref. 27.

Using the Singular Valve Decomposition (SVD) to Find a Basis for the
Space of Codon Vectors. Similar to ref. 22, we represent the codon
bias of a gene, i, with a codon vector, ci, with components ci,m(w),

Abbreviation: SVD, singular valve decomposition.
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where ci,m(w) is the codon frequency of the m(w)th codon (the
wth codon for amino acid m), normalized for amino acid content
(notation used throughout is listed in Table 1). Each ci,m(w) is
calculated as ci,m(w) � fi,m(w)��w�1

M(m) fi,m(w), where fi,m(w) is the
number of times the m(w)th codon is used in gene i, and M(m)
is the number of synonymous codons that code for amino acid
m. The denominator in the calculation of ci,m(w) normalizes for
amino acid content in that the sum of the components ci,m(w),
which code for the same amino acid, add to 1 regardless of how
many times that amino acid is coded for in the gene. Start codons
and stop codons are excluded from the calculations of ci,m(w).
After excluding stop codons, ci is a 61-dimensional vector. When
the genome, g, from which a gene, i, was taken is relevant, it is
denoted with a superscript, as in c i

g. Because different genomes
contain different numbers of genes, we randomly selected N �
400 genes from each of the G � 100 genomes so that each
genome had equal weight in the SVD. Altogether, NG � 40,000
genes were selected. We define the mean codon vector for the
genes in the study as the mean codon vector of these 40,000
randomly selected genes, c� � (1�NG)�i�1

NG ci. Let c̃ i
g � c i

g � c� be
the mean-centered codon vector for gene i in genome g. Define
the matrix

C � �c̃1
1, . . . , c̃N

1 , c̃N�1
2 , . . . , c̃2N

2 , . . . , c̃N(G�1)�1
G , . . . , c̃NG

G �T,

[1]

where each row is a mean-centered codon vector and the
superscript T indicates the transpose of the matrix. Only the 400
randomly selected genes from each genome are used in C.

We used a thin SVD (28) to decompose C into C � USVT,
where UTU � I, VTV � I, S � diag(�1, �2, . . . , �61), and �1 �

�2 � � � � ��61 � 0. The matrix V and the singular values �j are
given in Table 3, which is published as supporting information on
the PNAS web site. Fig. 1a shows a plot of the �j for j � 1, . . . ,
61. Because of the normalization for amino acid content, C is not
full rank; thus, �42 � �43 � . . . � �61 � 0 and can be excluded
from further consideration. By using the SVD, the mean-
centered codon vector for gene i can be written as c̃i �
�j�1

41 ui, j�jvj, where ui, j is the component in the ith row and jth
column of U and vj is the jth column of V. In other words, each
mean-centered codon vector is a weighted sum of the columns
of V. More specifically, each column of V, vj, is scaled by two
different weights. The first weight, �j, is the jth singular value and
can be thought of as a global scale factor. The larger the value
of �j, the more the codon vectors vary in the direction of vj. The
second scalar weight, ui, j, is a gene-specific weight that describes
how much vj, scaled globally by �j, contributes to c̃i. We refer to
the columns of V, {v1, . . . , v41}, as eigencodons. Table 2 shows
values for v1 and v2. The mean normalized usage of eigencodon
vj, i.e., the arithmetic mean of ui,j over all genes (not just the
subset used in the SVD) is denoted as u� j and the corresponding
variance is denoted as var(uj). The mean and variance of
eigencodon vj usage for all genes (not just the subset used in the
SVD) within a single genome g are denoted as u� j

g and var(uj
g),

respectively.

Separation of Within-Genome from Between-Genome Variation.
Var(uj) can be decomposed into two parts: (i) variance present
within individual genomes [within-genome variance, var(uj)within]
and (ii) mean values within genomes that vary from the overall
mean [between-genome variance, or var(uj)between]. This can be
expressed as:

var�uj� �

�
g�1

G var�uj
g�

G
�

�
g�1

G
�u� j

g � u� j�
2

G
[2]

� var�uj�
within � var�uj�

between, [3]

where G is the number of genomes considered. For convenience,
var(uj)within and var(uj)between will hereafter refer to a fraction of
var(uj) [obtained by dividing both sides of the equation above by
var(uj)], such that var(uj)within � var(uj)between � 1.

Context-Dependent Intergenic Nucleotide Biases (Intergenic Bias).
Context-dependent intergenic nucleotide biases were calculated
by using a fixed, second-order Markov model to analyze all
intergenic sequences for each of the 100 genomes examined in
this study. The frequency of each nucleotide was calculated for

Table 1. Frequently used symbols

m Index variable for amino acids
g Index variable for genomes
m(w) wth codon for amino acid m
N Number of genes selected from each genome for SVD

(400)
G Number of prokaryotic genomes used in study (100)
ci Codon vector for gene i
ci

g Codon vector for gene i from genome g
c�g Genome-wide codon bias for genome g; mean of the

codon vectors for all genes in g, not just the N used
in the SVD

c� Mean codon vector for the NG selected genes
c̃i Mean-centered codon vector for gene i
vj jth eigencodon
vm(w),j Component of vj representing codon m(w)
�j jth singular value; global scale factor representing

the variance of the selected NG genes in the
direction of vj

ui,j Amount of vj, scaled by �j, in c̃i

u� j Mean usage of �jvj among the mean-centered codon
vectors for all genes in all genomes

u� j
g Mean of ui,j taken over all genes i from genome g;

mean usage of �jvj among the mean-centered
codon vectors for all genes from genome g

var(uj
g) Variance in ui,j among all genes from genome g;

variance in usage of �jvj among the mean-centered
codon vectors for all genes from genome g

var(uj) Overall variance in ui,j for all genes, i, among all
genomes, g

var(uj)within Within-genome variance in var(uj)
var(uj)between Between-genome variance in var(uj)
dg Vector of intergenic bias parameters for genome g

Fig. 1. (a) Scree plot of singular values. Singular values (�j) were obtained
from a SVD of 400 genes from each of 100 genomes. (b) Contribution of
var(uj)between (between-genome variance) to overall variance. Overall variance
is scaled to 1 in each dimension. The rest of the overall variance is due to
var(uj)within (within-genome variance). In only two dimensions, j � 1 and 2, is
var(uj)between the major source of variance.
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each possible combination of nucleotides immediately 5	 and
immediately 3	. Taking all intergenic sequences 5	-N1N2N3-3	,
where N1 and N3 are fixed, we calculated the fraction in which
N2 is G, A, T, or C, which we denote as p(N2�N1, N3). All such
intergenic three-nucleotide sequences were included in the
calculation, except for the first three and last three nucleotides
of each intergenic region. Because �N2�G,A,T,C p(N2�N1, N3) �
1 for all 16 pairs of N1 and N3, 64 parameters exist of which 64 �
16 � 48 are linearly independent. In total, this set of 64
nearest-neighbor nucleotide bias parameters calculated from the
intergenic sequences of genome g is denoted as dg. For a given
organism, g, we will refer to the set of parameters dg as the
intergenic bias of that organism.

Least-squares techniques (29) were used to model the average
usage of eigencodon v2 in all genes in genome g, denoted u� 2

g , as
a function of dg, the intergenic bias of genome g. We let f � (u� 2

g)
be a vector with G components (one for each genome), and let
f� be the mean of the components of f. We further let D �
[d1 . . . dG]T be a matrix with intergenic bias parameters as its
rows and let D̃ be a version of D with every column centered
about zero. By using a thin SVD, we decomposed D̃ into D̃ �
YTXT, where YTY � I, XTX � I, and T � diag(t1, . . . , t64), where
t1 � t2 � t3 � � � � � t64 � 0. The matrix Y and the singular values
tj are given in Table 4, which is published as supporting infor-
mation on the PNAS web site. Because D̃ has rank 48, t49 � � � � �
t64 � 0, and the first 48 columns of Y form an orthogonal basis
for the range of D̃. In a least-squares model, f is approximated
as f� � �i�1

48 f Tyi yi. The larger the (fTyi)2, the greater the amount
of variance in f that can be explained by yi. In our case, the yi
corresponding to larger singular values, in general, explained
more variance than those corresponding to smaller singular
values, with y2, y3, and y8 being most critical to the model. To
avoid overfitting, we model f using yi for i � 1, . . . , 8.

To determine the quality of the resulting fit, we tested the
ability of randomized versions of D to explain f by using models
of the same complexity. Specifically, we permuted the entries of
D and renormalized the values so that each row satisfied the
constraints of a set of intergenic bias parameters. Then D was
centered as before and a least-squares fit to f was generated by
using the directions corresponding to the eight largest singular
values of the centered matrix. The randomization and fitting

procedure was repeated 10,000 times. For both the real and
randomized data, the quality of the fit was taken to be the
fraction of the variance in f explained by the model (the R2

statistic).

Results
Codon Bias Varies Between Genomes Primarily Along Two Dimensions.
Using a SVD as described above, we decomposed the space of
possible codon vectors into 41 orthogonal directions {v1, . . . ,
v41}, referred to as eigencodons. The eigencodons are ordered so
that gene to gene usage varies most in the direction of eigen-
codon v1 and least in the v41 direction. Every codon vector can
be represented uniquely as a linear combination of the 41
eigencodons. The fraction of var(uj) due to between-genome
variance [var(uj)between] is plotted for each eigencodon, vj, in Fig.
1b. For j � 1 and 2, between-genome variance accounts for the
majority of var(uj) (90% and 62%); for all other vj values,
between-genome variance accounts for much less of var(uj)
(5–32%). This means that var(u1

g) and var(u2
g), the within-

genome variances, are relatively small for all genomes; thus, for
most genes, i, in a given genome, g, ui,1

g and ui,2
g are close to u� 1

g

and u� 2
g , and u� 1

g and u� 2
g tend to differ for different genomes. In

other words, u� 1
g and u� 2

g are characteristic values for each genome
g because var(u1

g) and var(u2
g) are small for each genome g. On

the other hand, usage of all other eigencodons, vj, for j � 3, . . . ,
41, varies little between genomes compared with its variance
among the genes within a genome. Therefore, differences in
codon bias between genomes can be reasonably modeled by
using only two parameters, average usage of v1 and v2 (u� 1

g and u� 2
g ,

respectively). Inclusion of additional eigencodons adds little
discriminatory power.

Genome GC Content Correlates with u� 1
g. Each component of each

eigencodon represents a codon, m(w). Simple inspection of the
components of v1 suggests that v1 is related to gene GC content.
Nearly all codons ending in G or C contribute positively to v1

(positive vm(w),1) and those ending in A or T contribute nega-
tively (Table 2). Plotting u� 1

g versus genome GC content (Fig. 2a)
shows a strong positive correlation (R2 � 0.961). This correlation
also holds for individual genes; plotting ui,1 versus gene GC

Table 2. Codon vectors v1 and v2

Codon v1 v2 Codon v1 v2 Codon v1 v2

Ala GCA �0.088 0.077 Gly GGA �0.099 0.176 Pro CCA �0.107 0.091
GCC 0.118 �0.056 GGC 0.150 �0.178 CCC 0.076 0.030
GCG 0.078 �0.093 GGG 0.014 0.022 CCG 0.139 �0.161
GCT �0.108 0.071 GGT �0.065 �0.022 CCT �0.109 0.040

Arg AGA �0.139 0.263 His CAC 0.165 0.294 Ser AGC 0.067 �0.023
AGG 0.004 0.240 CAT �0.165 �0.292 AGT �0.062 0.002
CGA �0.018 �0.045 Ile ATA �0.070 0.297 TCA �0.063 0.057
CGC 0.131 �0.231 ATC 0.200 �0.155 TCC 0.064 0.006
CGG 0.053 �0.053 ATT �0.130 �0.138 TCG 0.073 �0.068
CGT �0.031 �0.176 Leu CTA �0.025 0.042 TCT �0.079 0.026

Asn AAC 0.187 0.134 CTC 0.077 0.050 Thr ACA �0.106 0.084
AAT �0.187 �0.132 CTG 0.153 �0.108 ACC 0.144 �0.100

Asp GAC 0.174 0.064 CTT �0.031 0.050 ACG 0.067 �0.065
GAT �0.174 �0.062 TTA �0.160 0.012 ACT �0.105 0.080

Cys TGC 0.196 �0.162 TTG �0.014 �0.045 Trp TGG 0.000 0.000
TGT �0.196 0.161 Lys AAA �0.181 �0.079 Tyr TAC 0.167 0.240

Gln CAA �0.216 �0.077 AAG 0.181 0.089 TAT �0.167 �0.244
CAG 0.217 0.051 Met ATG 0.000 0.000 Val GTA �0.087 0.080

Glu GAA �0.133 �0.107 Phe TTC 0.212 0.064 GTC 0.099 �0.066
GAG 0.133 0.109 TTT �0.211 �0.070 GTG 0.098 �0.113

GTT �0.110 0.100
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content (data not shown) gives a squared correlation coefficient
of R2 � 0.895.

Intergenic Context-Dependent Nucleotide Biases Correlate with u� 2
g.

We created a 64-parameter model, dg (referred to as intergenic
bias), from each genome’s intergenic regions, which describes
nucleotide biases that depend on the identity of immediately
adjacent bases (see Materials and Methods). The nearest-
neighbor nucleotide biases found in the intergenic regions are in
all cases (except those where the context specifies a stop codon)
positively correlated with biases in the third codon position of
genes from the same organism, when some constraints of the
genetic code are corrected for by fixing the first and second
codon positions and the first codon position of the following
codon (data not shown). This finding is not surprising because
it has been shown that dinucleotide biases influence codon bias
in several organisms (30, 31). To quantify whether differences in
u� 2

g could be explained by intergenic bias, we first constructed a
matrix, D � [d1 . . . dG]T, whose rows were the intergenic bias
parameters dg. We used a SVD to find the directions of largest
variance in D and then used least-squares techniques to model
u� 2

g as a linear combination of the eight directions of largest
variance (the approximation of u� 2

g is denoted û2
g). As shown in

Fig. 2b, the resulting model (referred to as the û2 model)
explained 66.9% of the variance in u� 2

g . As a control, we also
estimated u� 2

g by using 10,000 randomized versions of D. In no
case did the resulting models explain 
30.3% of the variance in
u� 2

g (see Materials and Methods for details).

Eukaryotic Genomes Have Characteristic Values for u� 2
g. Several eu-

karyotic species, namely Arabidopsis thaliana, Caenorhabditis
elegans, Drosophila melanogaster, and Saccharomyces cerevisiae,
have been noted to have a ‘‘prokaryotic-like’’ pattern of codon
bias (7, 32, 33), in that they obey the genome hypothesis. Others,
such as humans and other mammals, do not; GC content varies
greatly between regions of the mammalian genome, which are
termed isochores (34). Because GC content influences codon
bias (35), genes from different isochores have distinct patterns of
codon bias.

As expected, when we expressed the codon bias of A. thaliana,
C. elegans, D. melanogaster, and S. cerevisiae genes in terms of the
eigencodon basis generated from the SVD of prokaryotic codon
vectors, we found that the var(uj

g) for all eigencodons, vj, is
similar to that in prokaryotic organisms. Namely, var(u1

g) and
var(u2

g) are small, whereas var(uj
g) for j � 3, . . . , 41 are large

(Fig. 5, which is published as supporting information on the
PNAS web site, and Fig. 3). Expressing the codon bias of Danio
rerio, Encephalitozoon cuniculi, Plasmodium falciparum, and
Schizosaccharomyces pombe genes in terms of eigencodons also

produced the same pattern. Therefore, u� 1
g and u� 2

g are also
characteristic values in these eukaryotic organisms.

Human genes, on the other hand, have high var(u1
H. sapiens)

(i.e., they vary greatly in usage of v1), as expected from the
differences in GC content between isochores. Rat and mouse
genes also have somewhat high var(u1

g), although much smaller
than var(u1

H. sapiens). This finding is consistent with the observa-
tion that isochores in humans vary more in GC content than
those in rodents (36). Interestingly, var(u2

g) was small for all three
mammals examined, similar to var(u2

g) for prokaryotic genomes.
Therefore, although u� 1

g is not characteristic of all mammalian
genomes, u� 2

g is still characteristic of each of these three mam-
malian genomes.

Codon Usage in Prokaryotes Can Be Estimated from Intergenic Se-
quences. For any given genome, g, we define genome-wide codon
bias (c�g) as the mean codon vector for all the genes in g (not just
the subset used in the SVD). Given the intergenic sequences of
any prokaryote, we estimate that organism’s genome-wide codon
bias in the following manner. First, we calculate the GC content
of the intergenic sequences, which is highly correlated with the
overall GC content (35) and therefore u� 1

g , allowing us to estimate
u� 1

g (denoted û1
g) by using the following equation: û1

g �
0.000359�(intergenic GC content) � 0.0143, where GC content
is measured in percent. Also from the intergenic sequences, we
can calculate intergenic bias parameters, dg. From dg and the û2
model, we can compute û2

g , an estimate for u� 2
g . Then, predicted

genome-wide codon bias can be approximated as ĉg � û1
gv1 �

û2
gv2 � c�, where c� is the average codon vector for the genes used

in the SVD. This method predicts the genome-wide codon bias

Fig. 2. (a) Plot of u� 1
g versus genome GC content for each organism. Usage of

the first eigencodon correlates with genome GC content (R2 � 0.961). (b) Plot
of u� 2

g versus intergenic bias. The second eigencodon correlates with a model
constructed as a linear combination of intergenic bias parameters (R2 �

0.669). In both plots, open boxes are data points for A. thaliana, C. elegans, E.
cuniculi, P. falciparum, S. cerevisiae, and S. pombe.

Fig. 3. Eukaryotic genomes have low variance in usage of the second eigen-
codon. Expanded view of box and whisker plots of var(uj

g) for j � 1, . . . , 8 for
all prokaryotic genomes g, with values for eukaryotic genomes superimposed.
A full diagram can be found in Fig. 5. Box and whisker plots are drawn in gray.
Asterisks indicate outlying prokaryotic values. Values for eukaryotic organ-
isms are drawn individually with symbols as indicated in the upper left corner.
Compared with prokaryotic genomes, many eukaryotic genomes have large
variance in the usage of eigencodon v1 but relatively small variance in usage
of eigencodon v2. In general, variance is smaller for eukaryotic genomes than
for prokaryotic genomes because eukaryotic genes tend to be longer than
prokaryotic genes and hence provide less noisy samples of codon bias. Con-
sidering only long prokaryotic genes does not change the results qualitatively
(see Figs. 7–9, which are published as supporting information on the PNAS web
site).
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of any individual prokaryotic genome with an average R2 of
0.840. As shown in Fig. 4a, the components of c�g correlate with
the corresponding components of ĉg; in other words, the average
usage of individual codons among all genes within a genome
correlates very well with the usage predicted based on intergenic
sequence statistics.

Prokaryotic Parameters Can Be Used to Effectively Predict Eukaryotic
Genome-Wide Codon Bias from Eukaryotic Intergenic Sequences. We
then tested whether u� 1

g and u� 2
g for eukaryotic organisms corre-

lated with organism GC content and intergenic bias, respec-
tively. Not surprisingly, as shown by the open boxes in Fig. 2a, GC
content for A. thaliana, C. elegans, E. cuniculi, P. falciparum, S.
cerevisiae, and S. pombe has a correlation with u� 1

g similar to what
it has for prokaryotic organisms. As shown by the open boxes in
Fig. 2b, using the û2 model with eukaryotic intergenic bias
parameters results in values close to the regression line for
prokaryotic data. Based on these results, we can also predict
genome-wide codon bias quite well in these eukaryotes based
only on their intergenic sequences by using the relationships
between intergenic GC content and u� 1

g and u� 2
g calculated from

prokaryotic sequences (Fig. 4b). The squared correlation coef-
ficients (R2) for the individual organisms were the following: A.
thaliana, 0.789; C. elegans, 0.753; E. cuniculi, 0.717; P. falciparum,
0.932; S. cerevisiae, 0.892; and S. pombe, 0.915.

Discussion
Using a SVD, we defined 41 eigencodons, v1, . . . , v41. Linear
combinations of these eigencodons can completely describe the
codon bias of any gene. By quantitatively decomposing variation
in codon bias into a term for variation within genomes and a term
for variation between genomes, we show that between-genome
variation accounts for most of the variation in the usage of only
two of the 41 eigencodons, v1 and v2. In other words, genes from
the same genome are typically more similar to each other in their
usage of v1 and v2 than genes from different genomes. Genes
from each prokaryotic organism, g, examined thus use charac-
teristic amounts of v1 and v2, denoted u� 1

g and u� 2
g , respectively.

Because (i) codon bias varies more in the direction of v1 and v2
than in any other direction, and (ii) between-genome variation
[var(uj)between] is large in these two directions, u� 1

g and u� 2
g (usage

of v1 and v2) are the most important (i.e., most necessary)
parameters with respect to our eigencodon basis for describing
codon bias in archaeal and eubacterial organisms. In addition,

because (i) codon bias varies less in the directions of v3, . . . , v41
(i.e., �3, . . . , �41 are small) and (ii) between-genome variation in
u� j

g for j � 3, . . . , 41, is small, u� 1
g and u� 2

g are also largely sufficient
for describing genome-wide codon bias. The limitation to only
two parameters is somewhat surprising because differences
between genomes would be expected to be caused by many
global differences between organisms, such as in the replication
and transcription machineries, repair systems, and physical and
chemical environments.

Genome GC content, which is determined by directional
mutation pressure (ref. 37; although see ref. 38), correlates
closely with u� 1

g; thus, u� 1
g is likely also specified by directional

mutation pressure. In this article, we show that u� 2
g is also

determined by mutational pressures acting throughout the ge-
nome. Referred to as intergenic bias, the mutational pressures
correlated with u� 2

g depend on adjacent (nearest-neighbor) nu-
cleotide context. Because u� 1

g and u� 2
g are determined by muta-

tional pressures, they may be predicted from parameters calcu-
lated from intergenic sequences. Intergenic sequences can
therefore be used in a two-parameter model to predict genome-
wide codon bias in eubacterial and archaeal genomes. This
two-parameter model is also accurate in predicting codon bias
from intergenic sequences in most eukaryotic genomes, con-
firming that codon bias is largely determined by mutational
processes unrelated to protein expression in all three domains of
life.

Two observations argue that mutational processes are mostly
responsible for differences in codon bias between genomes in the
direction of v2. First, usage of v2 varies little among genes within
the same genome regardless of effective population size. The
effective population size of Escherichia coli has been estimated
at 108 to 109 (39), whereas that for mammals such as humans is
�104 (40). Estimates for the difference in selection coefficients
for different synonymous codons range from 10�9 (39) to 10�5

(41). Despite the large range, all estimates are consistent with the
notion that selection on synonymous codons may be operative in
E. coli (Nes � 1, i.e., effective population size times selective
coefficient is large) but not in Homo sapiens (Nes � 0.1) (5, 7,
42). However, although population size varies over more than
four orders of magnitude, var(u2

g) for all genomes studied varies
only over a five-fold range. Because H. sapiens has a small
effective population size compared with E. coli, one would
expect, given the same difference in selective coefficients for
different synonymous codons, that selectively maintained codon
usage would vary more in H. sapiens. In fact, var(u2

H. sapiens) is
actually half the value of var(u2

E. coli). Thus, the small value of
var(u2

g) for all organisms is difficult to explain by using selection.
Second, intergenic nucleotide biases explain more than two-
thirds of the variation in genome-wide average usage of v2 in all
archaeal, all eubacterial, and most eukaryotic organisms exam-
ined. Thus, most of the variation in u� 2

g can be explained by
properties of sequences in the same genome that are never
translated. In principle, some selective process acting during
protein expression may cause these correlated changes in inter-
genic sequences; however, a simpler explanation is that muta-
tional processes affect all the DNA within a given organism.
These mutational processes result in correlations between in-
tergenic sequence nucleotide biases and codon bias. Taking GC
content as a special case of nucleotide biases (where adjacent
nucleotide context is ignored), the preceding statement reduces
to the statement that directional mutation pressure influences
codon bias by causing qualitatively similar changes in GC
content in all DNA within a given organism.

It might be that selection maintains the small value of var(u2
g)

in E. coli and other bacteria, whereas mutation maintains it in H.
sapiens and other mammals. More generally, it might be that
different mechanisms besides mutation are responsible for main-
taining the small value of var(u2

g) in different organisms. This

Fig. 4. Graph of components of predicted genome-wide codon bias vector,
ĉg, based on intergenic nucleotide sequences versus components of actual
genome-wide codon bias vector, c�g. Each point in the plot represents a (c�m(w)

g ,
ĉm(w)

g ) coordinate pair for some organism g and some codon m(w). c�m(w)
g is a

component of c�g, and ĉm(w)
g is a component of ĉg. Different organisms and

codons are not differentiated in these plots. Stop codons (TAA, TAG, and TGA)
and the single codons for methionine (ATG) and tryptophan (TGG) were
excluded. (a) Prokaryotes. Overall R2 � 0.858. Average for individual genomes
is R2 � 0.840. (b) Data for the following eukaryotes: A. thaliana, C. elegans,
E. cuniculi, P. falciparum, S. cerevisiae, and S. pombe. Overall R2 � 0.847. R2

values for the individual genomes are given in the text.
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possibility cannot be completely excluded. However, because of
the good correlation of u� 2

g with parameters calculated from
intergenic sequences and because usage of v2 measures usage of
all codons to some extent, we prefer the simpler explanation that
mutation is the primary force maintaining small values of u� 2

g in
all organisms.

Usage of v2 is also correlated with organism optimal growth
temperature (Fig. 6, which is published as supporting informa-
tion on the PNAS web site). Organisms with higher optimal
growth temperature tend to have higher values of u� 2

g . This result
is in agreement with the results of others who note that the
second factor in a principal-components analysis or correspon-
dence analysis correlates with the organism’s optimal growth
temperature (24, 43). The results of ref. 24 demonstrate that
selection related to elevated growth temperature plays a role in
establishing codon bias in thermophilic organisms, which may be
related to the tendency for thermophilic organisms to system-
atically load RNA sequences with purines (25). However, our
results emphasize the importance of mutational (not related to
protein expression) forces in determining global trends in codon
bias. Specifically, because selection on codon bias or mRNA
structure during protein expression cannot explain the correla-
tion we observe with patterns of nearest-neighbor nucleotide
bias in intergenic sequences, we conclude that mutational pres-
sures are primarily responsible for the differences in usage of v2
between genomes, as discussed above. The role of selection is
instead appropriately ascribed to generating the relatively
smaller variation in usage of v2 among highly expressed ribo-
somal genes and other genes within the same genome (24) and
to a minor role in determining overall genome-wide codon bias.

In agreement with our interpretation that mutation is primar-
ily responsible for u� 2

g , other studies of the effect of high growth
temperature on DNA sequences also point toward a mutational
effect on DNA sequences in general and codon bias in particular.
A linear combination of dinucleotide abundances calculated
over entire genomes correlates well with optimal growth tem-

perature for one mesophilic and several thermophilic archaeal
organisms (30). The same result is obtained when coding se-
quences and intergenic sequences are analyzed separately. Be-
cause context-dependent nucleotide biases also influence codon
bias (30, 31), one would therefore expect growth temperature to
correlate with a mutational effect on codon bias. Furthermore,
recent work has shown that patterns of codon bias across many
different organisms, both thermophilic and mesophilic, can be
explained by a single mutational model dependent on position-
specific nucleotide parameters (23). Finally, elevated tempera-
tures result in markedly elevated rates of DNA damage (44), but
GC content does not correlate with optimal growth temperature
(30), suggesting a role for biases that are not captured by simple
GC content.

Based on our results and those of others, we propose the
following interpretation of observed codon bias and the genome
hypothesis (in the special case of mammals, the following general
statements may not apply to codon bias changes related to
isochores). The genome-wide codon bias of each organism is set
primarily by mutational forces, which create a point about which
the codon bias of individual genes in that organism are clustered.
The codon bias of individual genes or subsets of genes is
additionally perturbed from the genome-wide average codon
bias by selective and other mutational forces acting during
translation, but this effect is relatively much smaller. Therefore,
in all three domains of life, the ‘‘systems of codon usage’’
referred to by Grantham (which we have called genome-wide
codon bias) are coarsely set by mutational pressures and pre-
cisely modified by selective pressures.
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