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Abstract

Recently, inferring gene regulatory network from large-scale gene expression data has been considered as an important

effort to understand the life system in whole. In this paper, for the purpose of getting further information about lung

cancer, a gene regulatory network of lung cancer is reconstructed from gene expression data. In this network, vertices

represent genes and edges between any two vertices represent their co-regulatory relationships. It is found that this network

has some characteristics which are shared by most cellular networks of health lives, such as power-law, small-world

behaviors. On the other hand, it also presents some features which are obviously different from other networks, such as

assortative mixing. In the last section of this paper, the significance of these findings in the context of biological processes

of lung cancer is discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In these years, lung cancer has become the leading cause of cancer death worldwide [1]. Although biologists
have found some sensitive biomarkers for lung cancer by conventional biological methods [2], the goal of early
detection and diagnosis is still difficult to achieve, let alone cure it. This is largely due to the unclear
mechanisms that underlie lung carcinogenesis.

At molecular level, the genesis of lung cancer is determined by the status of genes in vivo. These genes do
not work independently, instead they interact with one another in the form of a complex network, which is
called gene regulatory network, and function coordinately as an organic whole [3,4]. Hence, the status of a
gene is determined by other genes that have interactions with it. So realizing the characteristics of the gene
regulatory network of lung cancer is essential to understand the genesis of lung cancer. Apparently,
conventional biology which deals with single molecule is not competent for unraveling such a complicate gene
e front matter r 2006 Elsevier B.V. All rights reserved.
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regulatory network through innumerable experiments. Therefore, development of new tools and methods is
necessary to solve this problem.

Recently, novel gene chip technology [5] has provided us an effective and high-throughput tool to measure
gene expression level on a large scale, while complex network [6,7] theory has provided us a new method to
study a complex system at the whole level. If they are combined, the problem mentioned above can be settled
in a way. So far, there have been many notable works in this direction [8–12].

Actually, information mined from the gene expression data by this kind of treatment is more profound
than by conventional cluster analysis [13], which prevailed in the past few years. For example, it can tell
us the possible regulatory interaction and mechanism, genes and relationships that are relatively
more important among all genes and interactions, the feature of the linkage style of the network, definite
clusters, etc.

In this paper, we use gene expression data obtained from normal and cancerous lung cells to reconstruct the
gene regulatory network of lung cancer, and the reconstruction algorithm is based on Refs. [11,12]. The main
improvement is that our algorithm can put co-express and counter-express gene pairs into the network
simultaneously.

The finally obtained network of lung cancer displays scale-free, small-world behaviors which are similar to
other empirically studied cellular networks of health lives, and assortative mixing degree correlation which is
opposite to those normal cellular networks. What is more, large clusters separated from the network all have
definite biological functionalities. In addition, the relationship between gene’s ability to be candidates of
biomarkers and its importance in the network are studied, and the results illustrates that there are no obvious
relationships between them.
2. Materials and methods

The gene expression data used here is an expression profile of 12; 600 genes for 203 samples [14], among
which 17 are normal lung specimens and the other 186 are lung tumors. As we are aiming to unravel the gene
regulatory network of lung cancer, we need to preprocess the original data for the purpose of selecting out the
most informative genes whose expression levels are sensitive to the variation of clinical attributes of lung cell.
Hence, we set up the same standard as that was mentioned in Ref. [14], i.e., a standard deviation threshold of
50 expression units, and filter out the 3312 most variable genes. Thereby, the final data used for the network
construction is a 3312� 203 matrix S, and its element Sij denotes the expression level of gene i in sample j.

The network construction algorithm is as follows: each vertex represents a gene. For any two given genes i

and j, we can calculate their Pearson correlation coefficient

rij ¼

P203
k¼1ðSik � SiÞðSjk � SjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP203

k¼1ðSik � SiÞ
2P203

k¼1ðSjk � SjÞ
2

q ; i; j ¼ 1; 2; . . . ; 3312,

where Si is the mean value of Sik taken over all k ¼ 1; 2; . . . ; 203. If jrijj is larger than the given threshold W 0,
then connect these two vertices by an edge. Hence, the topology of the network depends strongly on the
parameter W 0.

In order to select a reasonable threshold W 0, we systematically investigated the formation of the largest
cluster of the network by increasing W 0. The size of the largest cluster Nmax is plotted against the threshold
W 0 in Fig. 1a. It illustrates that the network structure will not vary dramatically when W 0 takes a value higher
than 0:72. Combined with consideration of a proper size of the network, we selected W 0 ¼ 0:75 as a
reasonable and typical threshold. The corresponding network has 3312 vertices and 6724 edges, among which
2050 vertices are isolated. Consequently, we select the 1262 non-isolated vertices and their 6724 linkages as the
components of the final network, and its largest cluster contains 412 vertices.

We can see that this kind of algorithm for network construction is better than algorithm mentioned in
Refs. [11,12] in the facet that it can take co-express and counter-express gene pairs into consideration
simultaneously by using jrijj as the connecting criterion.
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Fig. 1. (a) Size of the largest cluster Nmax as a function of the threshold W 0. (b) Degree distribution of the network under W 0 ¼ 0:75.
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Fig. 2. The distribution of edge (a) and vertex (b) betweenness.
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3. Statistical results of the network

3.1. Basic statistical features of the network

3.1.1. Degree distribution

Fig. 1b shows the degree distribution of the network. It is obvious that it follows power-law with an
exponent of 1.6. Therefore, the network is scale-free, and this means that there exist a few genes with
significantly high degrees play important roles in the network.

3.1.2. The distribution of vertex and edge betweenness

We analyze another statistical quantity of the network–betweenness [15]. It describes the importance of the
vertex or edge in connecting different groups of the whole network. Surprisingly, it is found that the
distribution of both vertex and edge betweenness also follows power law as illustrated in Fig. 2. That is to say,
there exist a few genes and co-regulatory relationships playing crucial roles in the communication between
different groups in the network. Therefore, deletion of these genes or relationships may not destroy the
function of each group, but will surely ruin the whole network’s functionality.
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3.1.3. Average shortest path and average cluster coefficient

The average shortest distance hli of the largest cluster is 3:89, and the corresponding average cluster
coefficient hCi is 0:61. As distance is relative to the number of edges between two vertices, this low hli tells us
that there are only 4 steps in average from one vertex to another. The large hCi suggests that the network is
quite compact. Here, low hli and large hCi together indicate the small-world behavior of the network. This
implies that once a gene is interrupted, the disturbance will quickly spread through the whole network.

3.1.4. Scaling of the cluster coefficient CðkÞ

Fig. 3a displays the average value of the clustering coefficient C (the average is taken over vertices with
degree k) as a function of k, and we can see that it distributes approximately linearly rather than CðkÞ�k�1 in a
hierarchical network. That is to say, the network may not have the hierarchical structure.

3.1.5. Degree correlations

We study the correlations between connectivity of interacting vertices [16] by investigating the relationship
between the average degrees knn

i of vertices in the neighborhood of a vertex i and the degree ki, and find that
they are positively correlative as illustrated in Fig. 3b. Such assortative mixing implies that high-degree
vertices are mostly connected to other high-degree vertices and low-degree vertices are connected to other low-
degree vertices. This is similar to the phenomena found in social networks such as scientific collaboration
network [17,18], but is opposite to the most cellular networks such as the protein interaction network [19]. We
guess that this kind of discordance may be one of the important origins of cancer. We can imagine that, in
normal state, active genes (namely high degree genes) tend to interact with inactive ones, so the whole in vivo
system can maintain in a well-balanced state; whereas in abnormal state, active genes tend to congregate so
that the balance of the system will easily be broken up and the system will be led into a disordered status.

3.1.6. Predominant linkage style

We also analyze the feature of the linkage between vertices, and find that there are a significant number of
edges connect vertices that were all with degree 2 as displayed in Table 1. That is to say, vertices with 2 edges
prefer to link with each other, and this linkage style is predominant in the whole network. We suppose that
this kind of structural pattern may have its superiority in fast signal transduction.

3.2. Modules of the network

Apart from those statistical features mentioned above, we also investigated modules in the network by
conducting Newman’s edge betweenness cluster algorithm [20], and finally gained 12 clusters. After searching
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Table 2

Result of the cluster analysis

Community no. Biological function

1 Relative to the drug resistance of the cancer cells

2 Relative to inflammation reaction

3 Relative to cell apotosis and invade

4 Relative to cell proliferation, differentiation, and individual development

5 Relative to the proliferation and metastasis of cancer cells

6 Relative to cell proliferation

7 Relative to the squama of epithelia

8 Relative to the nerve system and metabolism

9 Relative to the metastasis of tumor

10 Relative to immune process

11 Relative to the interaction between cells

12 Relative to the cell cycle

Table 1

Top 6 linkage styles in the network

Linkage style Recurrent times

(2,2) 82

(12,13) 44

(4,4) 38

(5,5) 34

(5,6) 32

(12,12) 32

Elements in the linkage style column ði; jÞ mean the mode that vertices with degree i are connected with vertices with degree j in a network.

Recurrent times refer to times that the corresponding linkage style appears in the network.
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for each gene’s biological function in the OMIM dataset (see http://www.ncbi.nlm.nih.gov), it is found that
these clusters all have definite biological functions as listed in Table 2. Fig. 4 illustrates the detail of two of the
clusters, and we can easily find that they are relative to the immune reaction and tumor metastasis, respectively
(see Supplementary Material for complete data sets).

3.3. Biomarker genes and their importance in the network

In Sections 3.1 and 3.2, we have investigated the network at macro and medium level, so we will turn to the
micro level research in this section. Since we have known that there are some functionally important genes
either with high degrees or betweenness in the network from Section 3.1, we will naturally wonder if such
important genes can be candidates for biomarkers [21] (A kind of molecules including genes, proteins,
metabolites, whose intensities change sensitively in response of the variation of clinical attributes, and can be
used to distinguish between patients and healthy persons) of lung cancer. Here, we use Ref. [22] as a reference,
and take Shannon entropy [23] as a measurement of the ability of genes to be biomarkers. For instance, to get
the Shannon entropy of gene i, we first transform the nominal variable which describes the specimen’s normal
and abnormal state into a boolean variable which takes value of 0 and 1, respectively, and then sort specimens
by increasing gene i’s expression values. After such operation, we can get several ‘‘families’’ which contain
nothing but normal specimens or nothing but abnormal specimens, and simultaneously we can obtain a series
of expression values fS�ijg which are boundaries of these families. For each S�ij , we can divide all specimens into
two parts, one of which (denoted as specimen set 1) is composed of those whose expression level of gene i is
higher than S�ij and the other (denoted as specimen set 2) is lower thanS�ij . Then we can give a quantity taking

http://www.ncbi.nlm.nih.gov
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Fig. 4. (a) Detail of the cluster with 47 genes. The circle in red represents each gene, and the edge represents the link between these genes.

Obviously, this large cluster can further be divided into two smaller groups. One is mainly composed of the family of major

histocompatibility complex, and the other is composed of immune molecules. (b) The detail of the cluster with 36 genes. Obviously, this

cluster is mainly composed of the collagen family, and is relative to tumor metastasis.
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Fig. 5. Relationship between the gene’s Shannon entropy, degree, and vertex betweenness.
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form of the Shannon entropy to measure S�ij ’s ability to be thresholds to distinguish normal person and
abnormal patients by

Hij ¼ qijH
1
ij þ ð1� qijÞH

2
ij ,

Hk
ij ¼ �p0

ij;k ln p0
ij;k � ð1� p0

ij;kÞ lnð1� p0
ij;kÞ; k ¼ 1; 2,
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where qij means the proportion of specimens whose expression level of gene i is higher than S�ij , while p0
ij;k

denotes the proportion of normal specimens in specimen set Hij. S�ij with maximum Hij can be the terminal
evaluation of gene i’s ability to be candidates of biomarker. Finally, as illustrated in Fig. 5, we find that there
do not exist a certain kind of genes that were more likely to be candidates for biomarkers. We can see that
some genes with extremely low degrees and extremely low vertex betweenness have low Shannon entropies,
but there still exists the same kind of genes with extremely high Shannon entropies. We may suppose that, in
the actual directed gene regulatory networks, both functionally important genes and pathologically sensitive
genes can be candidates for biomarkers.

4. Hints to understand lung cancer from features of the network

Recent research has approved that most of the cellular networks, such as protein interaction network
[19,24–28], gene regulatory network [11,29], metabolic network [30,31], bear some common interesting
features [32] that can be summarized as follows:
1.
 the power-law degree distribution,

2.
 small average shortest path and large average cluster coefficient,

3.
 a certain kind of structural pattern is predominant in the network,

4.
 there are modules in the network,

5.
 vertices with high degrees tend to connect with low degree ones.
In the previous section, we have demonstrated that our network also displays features 1–4 listed above.
However, as a network of cancer, which is an abnormal state of life, it also displays features obviously
different from those networks in normal state, such as feature 5 in the above.

All these findings indicate that the gene regulatory network of lung cancer is very compact. In such a system,
any two given genes can directly or indirectly interact with each other through several different pathways.
Such redundancy of signal transduction pathways may be one of the reasons for the robustness of lung cancer,
as deletion of one pathway would not interdict communications between two genes.

Several distinct gene groups with individual biological functions in the network are tightly connected by a
few of important genes and links. If these genes or links are deleted, gene groups will be separated into islands,
and information communication between them will be blocked. Besides, there still exist another few genes,
which are called ‘‘hubs’’, playing important roles in maintaining the integrity of the whole network. Former
research [33] of such scale-free network has told us that this kind of system is robust to random attacks, but
intentional attacks to these ‘‘hub’’ genes will make the network break down into a number of isolated vertices
quickly. These provide us a novel measure to evaluate genes’ importance in the network, and suggest a new
way to find drug targets.

In addition, the network also self-organizes in a unique topology, where a certain kind of structural pattern
appears significantly more frequent than others for the sake of fast signal transduction. We think that these are
typical features of the gene regulatory network of lung cancer. Although we do not know whether these
features are of lung cancer specificity, understanding of these characteristics is undoubtedly essential in further
research on lung cancer.

5. Discussion

Interactions between genes are so complicated that simple correlation coefficient is not enough to unravel
the real state of their regulatory relationships perfectly, especially in that it cannot indicate the direction of the
relationship. Hence, the network proposed here may not be the actual gene regulatory network of lung cancer,
and edges between genes represent association rather than causation relationships. However, it does partially
reflect some important characteristics of the real network, and this can be demonstrated by the result of the
cluster analysis.

Furthermore, we also attempt to weight each edge of the network by 1=jrijj, which represents the intensity of
the co-regulatory relationship between two genes, so as to describe the network more detailedly. Results have
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demonstrated that weight does not affect the property of the network, at least under such kind of weighting
manner.
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