Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans

Ryan J Taft\(^1\), Cas Simons\(^{1,2,8}\), Satu Nahkuri\(^1\), Harald Oey\(^1\), Darren J Korbie\(^1\), Timothy R Mercer\(^1\), Jeff Holst\(^3,4\), William Ritchie\(^3,4\), Justin J-L Wong\(^3\), John E J Rasko\(^3–5\), Daniel S Rokhsar\(^6\), Bernard M Degnan\(^7\) & John S Mattick\(^1\)

We have recently shown that transcription initiation RNAs (tiRNAs) are derived from sequences immediately downstream of transcription start sites. Here, using cytoplasmic and nuclear small RNA high-throughput sequencing datasets, we report the identification of a second class of nuclear-specific ~17- to 18-nucleotide small RNAs whose 3’ ends map precisely to the splice donor site of internal exons in animals. These splice-site RNAs (spliRNAs) are associated with highly expressed genes and show evidence of developmental stage- and region-specific expression. We also show that tiRNAs are localized to the nucleus, are enriched at chromatin marks associated with transcription initiation and possess a 3’-nucleotide bias. Additionally, we find that microRNA-offset RNAs (moRNAs), the mir-15/16 cluster previously linked to oncosuppression and most small nucleolar RNA (snoRNA)-derived small RNAs (sdRNAs) are enriched in the nucleus, whereas most miRNAs and two H/ACA sdRNAs are cytoplasmically enriched.

We propose that nuclear-localized tiny RNAs are involved in the epigenetic regulation of gene expression.

Recent advances in high-throughput RNA sequencing have led to the detection of new members of established classes of small RNAs\(^1,2\) and to the discovery and characterization of at least three classes of promoter-proximal species, including 5’-capped promoter-associated small RNAs (PASRs)\(^3\), transcription start site (TSS)-associated RNAs (TSSa RNAs)\(^4\) and transcription initiation RNAs (tiRNAs)\(^5\). The latter are ~18 nucleotides (nt) in length, are generated from sequences just downstream of transcription start site in animals and are generally associated with highly expressed genes, transcription-factor binding and GC-rich promoters\(^5,6\). To determine the subcellular location of tiRNAs and to investigate the possibility that there might be other classes of nuclear-enriched small RNAs, we performed targeted deep sequencing of small RNAs from the nuclear and cytoplasmic fractions of a human monocytic leukemia cell line (THP-1) and the nuclei of primary mouse granulocytes.

RESULTS

tiRNAs are localized in the nucleus

We assessed the relative nuclear enrichment of tiRNAs by analysis of THP-1 nuclear, cytoplasmic and total small-RNA deep-sequencing datasets, which were designed to specifically include very small RNA species (~15–30 nt) and whose purity was validated by quantitative PCR and northern blotting (Supplementary Fig. 1). Using synthetic RNA spike-ins to normalize between libraries (Supplementary Tables 1 and 2), we found that tiRNAs are >40-fold enriched in the nucleus (Fig. 1). Indeed, nuclear and cytoplasmic small-RNA fractions intersect with 7,014 and 914 Refgene TSSs, respectively, suggesting that tiRNAs may be expressed at the majority of genes in any given genetic system. Consistent with previous analyses, genes with tiRNAs derived from both RNA fractions are significantly more highly expressed than those without (\(P < 10^{-16}\), Supplementary Fig. 2a). The increased density of tiRNAs in the nuclear fraction reveals that 35% of genes have extensive sense and antisense clusters proximal to the TSSs (Fig. 2a) and shows that peak tiRNA and RNA polymerase II (RNAPII) density lies, on average, at the same position upstream of the +1 nucleosome, consistent with a model of tiRNA biogenesis dependent on RNAPII backtracking and transcription factor II S (TFII S) cleavage\(^5,6\) (Fig. 2b). Evidence for a regulated biogenesis pathway is further provided by the fact that tiRNAs show a terminal-nucleotide bias. Although tiRNA 5’ ends are randomly distributed, they are enriched for 3’-terminal guanines in THP-1 cells (Fig. 2c), chicken and Drosophila (Supplementary Fig. 3).

tiRNAs are enriched at transcription-initiation chromatin marks

Genes with highly expressed tiRNAs (abundance >8) show a pronounced peak of tiRNA density ~30 nt downstream of the TSS (Supplementary Fig. 4), are three-fold enriched for RNAPII binding compared to genes with a single tiRNA deep-sequencing read and are at least two-fold enriched for chromatin marks (derived from CD4+ cells\(^7,8\)) indicative of active transcription or transcription...

\(^1\)Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia. \(^2\)Queensland Facility for Advanced Bioinformatics, St. Lucia, Australia. \(^3\)Gene & Stem Cell Therapy Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia. \(^4\)Sydney Medical School, University of Sydney, Australia. \(^5\)Cell and Molecular Therapies, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, Australia. \(^6\)Department of Moleculare and Cell Biology and Center for Integrative Genomics, University of California Berkeley, Berkeley, California, USA. \(^7\)School of Integrative Biology, University of Queensland, St. Lucia, Australia. \(^8\)These authors contributed equally to this work. Correspondence should be addressed to J.S.M. (j.mattick@imb.uq.edu.au).

Received 29 January; accepted 27 April; published online 11 July 2010; corrected online 21 July 2010; doi:10.1038/nsmb.1841
initiation, including histone H3 Lys4 trimethylation (H3K4me3), histone H2B Lys5 acetylation (H2BK5ac), H3K9ac, H3K27ac, H3K18ac, H4K91ac, H2BK120ac, H3K4ac, H4K20ac, H4K3ac and H3K79me3 (Supplementary Fig. 5). Transcription initiation marks are also enriched at over 65,000 loci with tRNA-like clusters composed of predominantly 18-nt small RNAs. These clusters are >20-fold enriched at RNAPII binding sites and are also enriched at chromatin marks indicative of active transcription (Fig. 2d) but not at marks associated with silenced chromatin (for example, H3K9me2) or RNAPII elongation (for example, H3K79me3) (Fig. 2d). Notably, these clusters are also >11-fold enriched at CpG islands that lie outside UCSC knownGene boundaries, some of which show chromatin-modification profiles that mirror the set of marks at the nearest upstream gene, despite distances of 2 kilobases or more (for example, see Supplementary Fig. 6). These results suggest that ~18-nt nuclear small RNAs are generally associated with widespread transcription initiation across the genome and may mark the location of unannotated sites of RNAPII activity.

Splice-site RNAs are associated with splice donor sites

We also explored the possibility that small RNAs are associated with other genic features. Investigation of human Refseq exon boundaries...
revealed more than 5,000 THP-1 genes with small RNAs whose 3’ termini map precisely to the splice donor site (that is, the 3’ end of the exon), are ~35-fold enriched in the nuclear deep-sequencing library (Fig. 3a,b) and are present at internal exons regardless of gene length or exon number (Supplementary Table 3). These splice-site RNAs (spliRNAs) are detectable using mapping strategies that consider exon-exon or exon-intron boundaries and multimapping deep-sequencing reads (Supplementary Fig. 7a–f).

We also found that spliRNAs are expressed in a wide range of evolutionarily distant metazoans (Fig. 3 and Supplementary Fig. 7g–z). Indeed, spliRNAs are nuclear localized in primary mouse granulocyte nuclei (Fig. 4a and Supplementary Fig. 8), and a small but statistically significant subset (n = 109, P < 10^-20) is conserved with nuclear THP-1 spliRNAs. SpliRNAs are also detectable in mouse embryonic stem cells (Fig. 3c), a wide range of Drosophila melanogaster (Fig. 3d) and Caenorhabditis elegans (Fig. 3e) tissues and in one of the most basal multicellular animals, the marine sponge Amphimedon queenslandica (Fig. 3f). They have a modal length of 17 or 18 nt in human THP-1 cells and mouse primary granulocyte nuclei and a modal length of 17 nt in all other libraries and species examined. Their expression is not affected by the loss of Dicer or Dgcr8 in mouse embryonic stem cells (Fig. 4b,c), nor is expression altered in C. elegans germine mutants (Supplementary Fig. 7g–i), indicating that spliRNA biogenesis is not intimately connected with the pathways that produce miRNAs or siRNAs. Indeed, with few exceptions, spliRNAs are expressed in most tissues and developmental stages in Drosophila and C. elegans (Supplementary Fig. 7j–r).

SpliRNAs, however, are more enriched compared to background in Drosophila heads compared to bodies, are almost undetectable in imaginal discs and are less abundant in adult sponge compared to embryo (Fig. 3f and Supplementary Fig. 7s–x), suggesting that spliRNAs may be connected with high gene expression in actively proliferating or undifferentiated tissues. Indeed, THP-1 and Drosophila genes with spliRNAs are more highly expressed than those without (Supplementary Fig. 2b,c). To determine whether spliRNAs are present outside the animal kingdom, we investigated small-RNA distributions at splice donor sites in the flowering plant Arabidopsis thaliana and the budding yeasts Saccharomyces castellii and Saccharomyces cerevisiae. As with tRNAs (6), we detected no evidence of spliRNAs in yeast or plants (data not shown).

Overall, spliRNAs are weakly expressed (the median abundance in THP-1 nuclei is 1) and, similar to tRNAs, show a strong enrichment for 3’-terminal guanines, which is likely driven by the consensus splice-site sequence (data not shown). Additionally, although spliRNAs are statistically more common at constitutive splice sites, we also observed a mild but statistically significant enrichment of spliRNAs at alternative first exons (Supplementary Table 4). To query the relationship between RNAPII activity and spliRNAs, we examined the recently described GRO-seq dataset (13) and compared the position, amount and orientation of transcriptionally engaged RNA polymerases. We found a local GRO-seq minimum at the splice donor site (Supplementary Fig. 9), which aligns with the position of spliRNAs and may be consistent with a model of spliRNA biogenesis dependent on cleavage of the 3’ end of the nascent transcript.

Figure 3 Splice-site RNAs are conserved across metazoan. The position of small-RNA 3’ ends is plotted with respect to the splice donor site (that is, the 3’ end of the exon). Top, schematics depict the position of spliRNAs and their strand orientation with respect to exon-exon junctions. (a,b) Small RNAs, dominantly ~17 or 18 nt, are >35-fold enriched at the 5’ splice site in THP-1 nuclei compared to either the background (a) or cytoplasmic THP-1 small RNAs (b). (c–f) Splice-site RNA expression is conserved in species representative of all major metazoan lineages, including mouse (c), the fruit fly D. melanogaster (d), the nematode C. elegans (e) and the marine sponge A. queenslandica (f). The data presented in c, d, e and f are derived from the publicly available National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) series GSE12521, GSE11624, GSE11738 and GSE12578, respectively. Please see Supplementary Methods and Supplementary Table 7 for further details.

Figure 4 Mouse spliRNAs from primary granulocyte nuclei and embryonic stem cells. (a) The density of small RNAs in primary mouse granulocyte nuclei at exon-exon junctions. (b,c) The density of small RNAs in mouse embryonic stem (ES) cells lacking the miRNA-processing enzymes Dicer or Dgcr8 (GSE12521). Splice-site RNA biogenesis is not affected by the loss of these RNAi components in mouse ES cells.
Indeed, we and others have recently shown that nucleosomes are preferentially positioned at exons \(^{14-17}\) and that nucleosomes containing H3K36me3, which are associated with expressed exons, are positioned just downstream of the exon boundary \(^{15,18}\), raising the possibility that a RNApolyII-dependent mechanism, like that proposed to generate tiRNAs\(^3\), also leads to the biogenesis of spliRNAs. Consistent with this hypothesis, short introns are two-fold enriched downstream of exons expressing spliRNAs, which could promote RNApolyII pausing and backtracking due to the proximity of the downstream exon-associated nucleosome (Supplementary Fig. 10a), and spliRNAs are \(\sim2\times\) less frequent at exons \(<60\) nt in length (Supplementary Fig. 10b), which generally lack positioned nucleosomes \(^{14}\).

MicroRNA-offset RNAs are nuclear enriched

In addition to tiRNAs and spliRNAs, we identified several other nuclear-enriched small-RNA species in THP-1 cells. Micro-RNA offset RNAs (moRNAs) are conserved small RNAs derived from the ends of pre-miRNAs \(^{19}\). Consistent with recent analysis that these species are present in humans \(^{20}\) and are processed by the nuclear-localized RNase Drosha \(^{19,20}\), we find that moRNAs are 18-fold enriched in the THP-1 nucleus and tend to be \(-19\) or 20 nt in length (Fig. 5a,b). Previous reports have suggested that moRNAs can be derived from either end of the pre-miRNA; however, our data indicate that moRNAs from 60 pre-miRNAs are almost exclusively derived from the 5’ arm, regardless of the position of the processed mature miRNA (Fig. 5c and Supplementary Fig. 11), suggesting that moRNA and miRNA biogenesis may be linked but are not interdependent. Indeed, consistent with reports of moRNAs in Ciona intestinalis \(^{19}\), the abundance of some THP-1 moRNAs exceeds that of the mature miRNA derived from the same locus (Supplementary Fig. 11).

Select miRNAs are nuclear enriched in THP-1 cells

Expression profiling revealed that a small subset of miRNAs is also nuclear enriched (Fig. 5d,e and Supplementary Table 5). Although most miRNAs are cytoplasmically localized, some are present in equal concentrations in both compartments (for example, let-7a and let-7i; Supplementary Table 5) or are somewhat nuclear enriched (for example, miR-15a; Supplementary Table 5). Three other miRNAs, miR-374b, miR-15b and miR-16, are more than two-fold enriched in the nucleus (Fig. 5d,e). Downregulation of the mir-15/16 cluster has been associated with chronic lymphocytic lymphoma, pituitary adenomas and prostate carcinoma and is known to target multiple oncogenes, including BCL2, MCL1, CCND1 and WNT3A\(^{21}\). The results presented here suggest that miR-15/16 might have additional nuclear functions or might interact with targets within the nucleus.

sdRNAs show differential subcellular localization

There is emerging evidence that miRNAs and small nucleolar RNAs (snoRNAs) are evolutionarily related \(^{22,23}\), and it has recently been shown that snoRNAs, which are classified as either C/D or H/ACA, can be processed into snoRNA-derived RNAs (sdRNAs) with distinct size distributions \(^{22}\). Consistent with snoRNA localization to the nucleolus, C/D sdRNAs are 3- to 200-fold enriched in the THP-1 nuclear fraction (Supplementary Table 5 and Supplementary Fig. 12). However, sdRNAs from two H/ACA snoRNAs, SNORA36B and SNORA63 (also known as E3), which are miRNA-like and are predominantly \(-22\) nt in length (Supplementary Fig. 12), are approximately three-fold enriched in the cytoplasm, consistent with previous reports \(^{22,23}\). These data indicate that the boundary between miRNAs and other small RNAs, particularly H/ACA sdRNAs, may be blurry. Indeed, like miR-15/16, sdRNAs from three additional H/ACA snoRNAs are miRNA-sized but nonetheless are nuclear enriched (Supplementary Table 5).

DISCUSSION

Taken together, these data suggest that there is a wide range of small RNAs localized to, and abundant in, the metazoan nucleus. We propose that many of these species are involved in regulating epigenomic modifications and transcription. Transcription initiation RNAs and spliRNAs may have a common origin and function, possibly associated with the positioning of nucleosomes. If this is so, our preferred hypothesis is that this is an evolved capacity of RNApolyII backtracking\(^6\) that allows efferent signals to be produced in parallel with transcription elongation to mark the position for future reference. Indeed, 31% of THP-1 genes with spliRNAs also have tiRNAs. However, two alternative, but not mutually exclusive, possibilities are that spliRNAs are linked to, or are byproducts of, splicing or result from post-transcriptional cleavage of longer capped RNAs\(^3\). The absence of tiRNAs and spliRNAs in yeast and plants may reflect the absence of RNApolyII backtracking due the proximity of the downstream exon-associated nucleosome (Supplementary Fig. 10b).
small-RNA maxima coincide with minima of nucleosome density (Supplementary Fig. 13). Therefore, although these small RNAs do not meet the criteria we have used to define tiRNAs and spliRNAs in metazoans, they show many similar characteristics, suggesting that very small RNAs are a basal feature within the eukaryotic lineage that may have been co-opted to specific genomic positions and into specific roles in animals.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/nsmb/.

Accession codes. Gene Expression Omnibus: THP-1 and mouse granulocyte nuclei small-RNA datasets can be retrieved with accession numbers GSE20664 and GSE20683, respectively. Additional files and information can be found at http://matticklab.com/index.php?title=NuclearTinyRNAs.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

ACKNOWLEDGMENTS

We thank GeneWorks for assistance modifying the Illumina protocol to facilitate detection of very small RNA species and for deep sequencing the THP-1 and primary mouse granulocyte nuclei small-RNA samples and M.E. Dinger for bioinformatic assistance with the analysis of wiggle format tracks. J.S.M. and R.J.T. are supported by a Federation Fellowship grant (FF0561986) and a Discovery Project grant (DP0988851) from the Australian Research Council. J.E.J.R. received project support from the Australian National Health and Medical Research Council (358300) and the Sydney Cancer Centre Foundation. J.E.J.R. and J.H. received support from Cure The Future Foundation. J.E.J.R. received project support from the Australian National Health and Medical Research Council (199463) and the Sydney Cancer Centre Foundation. J.E.J.R. and J.H. received salary support from an Australian National Health and Medical Research Council Training Fellowship.

AUTHOR CONTRIBUTIONS

R.J.T designed the THP-1 deep sequencing and bioinformatic experiments, led the analysis and wrote the manuscript; C.S. made the initial spliRNA observation, designed the bioinformatic analysis of spliRNAs with R.J.T. and helped to write the manuscript; S.N. performed the analysis of spliRNA expression with respect to exon position and exon and intron size and helped to write the manuscript; H.O. and D.I.K. isolated the THP-1 nuclear and cytoplasmic RNA and performed the northern blots, respectively; T.R.M. performed the initial GRO-seq analysis; J.H., W.R., J.J.-L.W. and J.E.J.R. isolated and sequenced the mouse primary granulocyte nuclei small-RNA samples; D.S.R. and B.M.D. provided A. queenslandica genome sequences; J.S.M. helped to design the study and wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/nsmb/.

Published online at http://www.nature.com/nsmb/.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.

ONLINE METHODS

THP-1 RNA isolation and validation. THP-1 cells were grown in suspension culture.2,7 Nuclear and cytoplasmic RNA was isolated as previously described, except that washes were carried out using 1 ml of wash buffer, and Tween-40 was substituted for Tween-20 in the final wash. RNA was extracted using the TRIzol protocol (Invitrogen), and the resulting RNA pellets were resuspended in equal volumes to obtain cell-equivalent concentrations. Seven RNA species were assessed by quantitative PCR and/or northern blotting to validate nuclear and cytoplasmic RNA fractionation. (Supplementary Fig. 1 and Supplementary Table 6). For more details, see Supplementary Methods.

Mouse granulocyte nuclei preparation and RNA isolation. Bone marrow from C57BL/6J was harvested from the femur, tibia and spine using a mortar and pestle in PBS supplemented with 2% (v/v) FCS and mature granulocytes purified by flow cytometry as described previously.26,27. Purification was validated by reanalysis by flow cytometry and May-Grünwald Giemsa staining. Nuclear purification was carried out using the PARIS kit (Ambion). RNA was extracted from the nuclear fraction using Trizol before deep sequencing. For more details, see Supplementary Methods.

Small RNA deep sequencing. Deep sequencing of cytoplasmic and nuclear small RNAs from THP-1 cells and mouse granulocyte nuclei was performed by GeneWorks on the Illumina GAII. For THP-1 small RNA sequencing, sample isolation from the PAGE gel after adapter ligation was performed with a modified set of size markers to facilitate sequencing of small RNAs >15 nt. For more details, please see Supplementary Methods.

Other small-RNA deep sequencing datasets. Small-RNA datasets from mouse9, Drosophila10, C. elegans11, A. queenslandica12 and budding yeast13 were obtained from the NCBI GEO (Supplementary Table 7). Human GRO-seq data13 was also obtained from NCBI GEO (GSE13518).

Reference genome and annotation sources. Human (hg18, NCBI build 36.1), mouse (mm9, NCBI build 37), Drosophila (dm3, BDGP release 5), C. elegans (ce6, WS190) and S. cerevisiae (sacCer2, SGD June 2008) genome sequences and gene and genome feature annotations were obtained from a local mirror of the UCSC Genome Browser31. Human and mouse Refseq genes were obtained from the respective refGene databases. Drosophila Flybase, C. elegans Sanger and S. cerevisiae SGD gene annotations were obtained from the dm3.flyBaseGene, ce6.sangerGene and sacCer2.sgdGene databases, respectively. A. queenslandica and annotations were obtained from the University of Queensland sponge genome sequence database. The S. castellii genome sequence and annotations were obtained from the Yeast Gene Order Database.32 We used the Arabidopsis TAIR8 genome sequence and the TAIR8 Ensemble gene annotations33.

CD4+ T cell nucleosome modification data were downloaded from the authors’ website.34 Control CD4+ T cell nucleosome datasets were obtained from the NCBI Sequence Read Archive (SRRO00711–SRRO00720). S. cerevisiae combined H3 and H4 nucleosome data was obtained from the authors’ website.34.

Bioinformatic analyses. Bioinformatic analyses were performed on a local high-performance computer that houses a mirror of the UCSC Genome Browser31. We used a suite of in-house AWK, C, Perl, and Python scripts and UCSC backend tools. Small-RNA datasets, raw CD4+ nucleosome data and S. cerevisiae H3 and H4 nucleosome data were mapped to the appropriate genome using ZOOM.35 Small RNA, GRO-seq, chromatin modification and nucleosome density distributions were generated by converting mapped tag positions to genome-wide wiggle density plots and averaging these densities across all loci of interest. For CD4+ T cell nucleosome data34, we extended the genomic matches of all uniquely mapping tags in the 3′ direction so that they reached a total length of 150 nt, consistent with the expected length of nucleosome-associated DNA, as described previously.15,36

The abundance of THP-1 nuclear and cytoplasmic small-RNA datasets was normalized by the relative expression of spike-ins 2 and 6 (Supplementary Table 2). Bioinformatic queries against spike-ins were performed without mismatches to ensure accurate quantification and normalization. Identification and analysis of THP-1 nuclear tiRNAs was performed as previously described.2. Analysis of the expression of genes with tiRNAs was accomplished using gene-expression data from undifferentiated THP-1 cells2, as described previously.3. Refgenes with high tiRNA abundance (>8) or low tiRNA abundance (1) were obtained, and regions −60 to +300 relative to the TSS were assessed for chromatin-mark densities. Unannotated 18-mer oligos identified after eliminating all canonical tiRNAs and then further filtering to exclude those proximal to any knownGene TSS or within a knownGene boundary (that is, within the bounds defined by the transcription start and stop sites). Enrichments at chromatin marks used loci with chromatin-mark tag densities two standard deviations higher than the mean for that mark across the genome. Loci located near TSSs (within 200 nt) or that mapped to known small-RNA annotations were excluded. The relative enrichment of nuclear small RNAs at each chromatin mark or protein-binding site was assessed using an in-house (Perl) bootstrapping program over 1,000 iterations.

Splice-site RNAs are defined as small RNAs, dominantly 17 or 18 nt, whose 3′ ends map to the 3′ end of internal exons. spriRNAs were mapped to both the genome and a library of splice-site junctions for each organism. Dips of small RNAs just across the splice site in some organisms may reflect poor gene annotations (that is, missed exons). To examine the conservation of spriRNAs between human THP-1 and mouse granulocyte nuclei, a Fisher’s exact test was used to examine the significance of the association between syntenic splice donor sites (N = 162,807) that have one or more spriRNAs in the human THP-1 nuclear dataset (N = 3,044), only the mouse granulocyte nuclei dataset (N = 2,037) or both (N = 109). Analysis of the expression of genes with spriRNAs in human and Drosophila was accomplished using gene-expression data from undifferentiated THP-1 cells2 and a Drosophila developmental time course37, as described previously.5. To examine the association of spriRNAs with alternative and constitutive exons, UCSC knownGene exon annotations were used to derive the splicing status of exons with spriRNAs versus exons without spriRNAs in the same genes. The prevalence of four different alternative splicing events (Supplementary Table 4) in both datasets was assessed, and the statistical significance of the observed difference was calculated using the Fisher’s exact test.

We used annotations from mirBase version 12 (ref. 38) to assess THP-1 nuclear and cytoplasmic miRNA expression. To ensure accurate expression values, we included all uniquely mapping and multimapping tags that mapped exclusively to miRNA loci. Relative microRNA expression was calculated as the sum of the normalized abundance of all tags that mapped to any particular pre-miRNA. We defined moRNAs as any RNA tag that covered the most 5′ or 3′ ends of a pre-miRNA annotation. Using EDC northern blots29, the nuclear enrichment of miR-15 was assessed using a probe spanning the 5′ 16 nucleotides, and miR-16 was detected using a probe spanning its entire length (Supplementary Table 6).