
 10.1101/gr.7301508Access the most recent version at doi:
 2008 18: 780-790Genome Res.

 
Rafael A. Irizarry, Christine Ladd-Acosta, Benilton Carvalho, et al.
 
(CHARM)
Comprehensive high-throughput arrays for relative methylation
 
 

Material
Supplemental  http://genome.cshlp.org/content/suppl/2008/04/02/gr.7301508.DC1.html

References

 http://genome.cshlp.org/content/18/5/780.full.html#related-urls
Article cited in: 
 

 http://genome.cshlp.org/content/18/5/780.full.html#ref-list-1
This article cites 34 articles, 13 of which can be accessed free at:

Open Access Freely available online through the Genome Research Open Access option.

 http://genome.cshlp.org/subscriptions
 go to: Genome ResearchTo subscribe to 

Copyright © 2008, Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on February 16, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.7301508
http://genome.cshlp.org/content/suppl/2008/04/02/gr.7301508.DC1.html
http://genome.cshlp.org/content/18/5/780.full.html#ref-list-1
http://genome.cshlp.org/content/18/5/780.full.html#related-urls
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com


Related Content

 
 Genome Res. July , 2010 20: 972-980

John R. Edwards, Anne H. O'Donnell, Robert A. Rollins, et al.
genomic methylation patterns
Chromatin and sequence features that define the fine and gross structure of
 

 Genome Res. March , 2010 20: 320-331
Louise Laurent, Eleanor Wong, Guoliang Li, et al.
Dynamic changes in the human methylome during differentiation
 

 Genome Res. September , 2009 19: 1593-1605
Emily Hodges, Andrew D. Smith, Jude Kendall, et al.
single molecule bisulfite sequencing
High definition profiling of mammalian DNA methylation by array capture and
 

 Genome Res. August , 2009 19: 1374-1383
Scott V. Dindot, Richard Person, Mark Strivens, et al.
and genetic features at differentially methylated regions
Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic
 

 Genome Res. October , 2008 18: 1652-1659
Mattia Pelizzola, Yasuo Koga, Alexander Eckehart Urban, et al.
DNA methylation levels based on microarray derived MeDIP-enrichment
MEDME: An experimental and analytical methodology for the estimation of
 

 Genome Res. November , 2008 18: 1806-1813
Bo Wen, Hao Wu, Hans Bjornsson, et al.
imprinted gene regions and predict allele-specific modification
Overlapping euchromatin/heterochromatin- associated marks are enriched in
 

 Genome Res. June , 2009 19: 1044-1056
Alayne L. Brunner, David S. Johnson, Si Wan Kim, et al.
embryonic stem cells and developing human fetal liver
Distinct DNA methylation patterns characterize differentiated human

service
Email alerting

 click heretop right corner of the article or
Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
 go to: Genome ResearchTo subscribe to 

Copyright © 2008, Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on February 16, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/content/genome/19/6/1044.full.html
http://genome.cshlp.org/content/genome/18/11/1806.full.html
http://genome.cshlp.org/content/genome/18/10/1652.full.html
http://genome.cshlp.org/content/genome/19/8/1374.full.html
http://genome.cshlp.org/content/genome/19/9/1593.full.html
http://genome.cshlp.org/content/genome/20/3/320.full.html
http://genome.cshlp.org/content/genome/20/7/972.full.html
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;18/5/780&return_type=article&return_url=http://genome.cshlp.org/content/18/5/780.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com
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This study was originally conceived to test in a rigorous way the specificity of three major approaches to
high-throughput array-based DNA methylation analysis: (1) MeDIP, or methylated DNA immunoprecipitation, an
example of antibody-mediated methyl-specific fractionation; (2) HELP, or HpaII tiny fragment enrichment by
ligation-mediated PCR, an example of differential amplification of methylated DNA; and (3) fractionation by McrBC,
an enzyme that cuts most methylated DNA. These results were validated using 1466 Illumina methylation probes on
the GoldenGate methylation assay and further resolved discrepancies among the methods through quantitative
methylation pyrosequencing analysis. While all three methods provide useful information, there were significant
limitations to each, specifically bias toward CpG islands in MeDIP, relatively incomplete coverage in HELP, and
location imprecision in McrBC. However, we found that with an original array design strategy using tiling arrays and
statistical procedures that average information from neighboring genomic locations, much improved specificity and
sensitivity could be achieved, e.g., ∼100% sensitivity at 90% specificity with McrBC. We term this approach
“comprehensive high-throughput arrays for relative methylation” (CHARM). While this approach was applied to
McrBC analysis, the array design and computational algorithms are fractionation method-independent and make this
a simple, general, relatively inexpensive tool suitable for genome-wide analysis, and in which individual samples can
be assayed reliably at very high density, allowing locus-level genome-wide epigenetic discrimination of individuals,
not just groups of samples. Furthermore, unlike the other approaches, CHARM is highly quantitative, a substantial
advantage in application to the study of human disease.

[Supplemental material is available online at www.genome.org.]

The methylome is defined as the comprehensive picture of DNA
methylation across the genome, and it is an important shift in
focus from the individual gene level (Feinberg 2001). The ratio-
nale for this view is that our focus on methylation in the pro-
moters of known genes is too constrained, that much of meth-
ylation is not where one looks. Despite introduction of the word
“methylome” into the literature 6 yr ago, DNA methylation has
made the least progress of any functional element in its under-
standing from a genomic perspective (Callinan and Feinberg
2006). This is ironic as DNA methylation is relatively well under-
stood from a gene perspective, i.e., its method of propagation is
well known, in comparison to chromatin modification, and DNA
methylation has a strong link to the DNA sequence itself, i.e.,
encoding specifically at CpG dinucleotides, all of these much
more so than other types of epigenetic information, such as chro-
matin modification.

Why has so little progress been made in understanding the
methylome? Two major limitations may be responsible. First is a
fundamental bias regarding the location of methylation modifi-
cation in disease and even in studies of variation in tissues, i.e.,
largely restricted to “CpG islands,” and limitations in the detec-

tion methods themselves. Bird introduced the concept of a CpG
island in 1987 (Bird et al. 1987), as regions of dense CpG content
normally protected from DNA methylation in vertebrates but
found frequently to be methylated in cancer (for review, see Es-
teller 2006). It has been widely believed that CpG island meth-
ylation is the most critical target for understanding genomic
DNA methylation, although that island-centric view is undergo-
ing rethinking (Jones and Baylin 2007). For example, binding
sites for the insulator protein CTCF within differentially meth-
ylated regions of imprinted genes appear in short stretches of
about 50 nucleotides, with a relatively conserved ∼20-bp core
(e.g., Rosa et al. 2005). Thus, it is likely that other minimal units
of DNA methylation will be smaller and of different GC content
than densely GC-rich regions. Traditional approaches for DNA
methylation analysis focused specifically on CpG islands may
also miss sites important for topological conformation of DNA
within the nucleus and gene regulation. For example, we earlier
identified GC-rich regions that did not meet the definitional re-
quirement of CpG island but are normally methylated and over-
represented near the ends of chromosomes (Onyango et al.
2000).

The second reason for the slow pace of understanding the
methylome is substantial limitations in current technology af-
fecting sensitivity, specificity, throughput, quantitation, and cost
among the currently used detection methods. The most com-
monly used methods can themselves be divided into three cat-
egories (Table 1): (1) Bisulfite DNA sequencing. This involves
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5Corresponding authors.
E-mail afeinberg@jhu.edu; (410) 614-9819.
E-mail rafa@jhu.edu; fax (410) 955-0958.
Article published online before print. Article publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.7301508. Freely available online
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chemical conversion of cytosine to uracil by sodium bisulfite or
metabisulfite, followed by PCR (which incorporates T for U), and
then DNA sequencing. While providing single-base resolution,
the cost is the highest of all the commonly used methods, tens of
thousands of dollars for a megabase of sequence data, itself com-
prising 40,384 CpG dinucleotides assayed (Eckhardt et al. 2006),
and is therefore not currently suitable for whole-genome analysis
on multiple samples. (2) A variety of methods that interrogate
specific single-CpG dinucleotides or amplicons. These include
MethyLight (Eads et al. 2000), COBRA (Xiong and Laird 1997),
bisulfite pyrosequencing (Dupont et al. 2004), and the Illumina
GoldenGate methylation assay (Bibikova et al. 2006). While sen-
sitive, specific, and relatively inexpensive, none of these methods
is suitable for analysis of the whole genome, which includes ∼28
million CpG dinucleotides. (3) Microarray-based methods. These
can interrogate much larger numbers of CpG than the other ap-
proaches, at extremely low unit cost, since the pricing is similar
to other non-methylation-based array methods.

There are four major types of microarray-based methylation
analysis. (1) Direct hybridization to CpG island arrays. This was
one of the earliest methods; it was used to provide valuable data
on tumor-type classification, for example (Gitan et al. 2002), and
it still remains a useful discovery tool. However, its earliest de-
velopers have migrated away from this approach, since it requires
presupposition about the potentially methylated sequences. (2)
Methylated DNA immunoprecipitation (MeDIP), in which meth-
ylated DNA is fractionated using an antibody and then hybrid-
ized, with a differentially labeled total DNA control, to an oligo-
nucleotide array (Weber et al. 2005). (3) Restriction enzyme di-
gestion using methylcytosine-sensitive enzymes, followed by
ligation-mediated PCR amplification of the targets. The paradigm
of this method is the HELP (HpaII tiny fragment enrichment by
ligation-mediated PCR) assay (Khulan et al. 2006). DNA is di-
gested in parallel with MspI (resistant to DNA methylation), and
then the HpaII and MspI products are amplified by ligation-
mediated PCR and hybridized using separate fluorochromes to a
customized array. As HpaII sites comprise 8% of CpG, that rep-
resents a fixed limit of sensitivity of the method. Alternatively,
the restriction enzyme-digested DNA can be directly sequenced
rather than hybridized to microarrays (Allinen et al. 2004), al-
though one is still limited by the relatively small number of
methylcytosine-sensitive restriction sites in the genome. (4) Re-
striction enzyme digestion of methylated DNA using McrBC,
without PCR, and differential hybridization to an array. DNA is
digested with McrBC, an enzyme with the unusual and desirable
property of cutting methylated DNA promiscuously (recognition
sequence RmC(N)55–103RmC), cleaving half of the methylated
DNA in the genome and all methylated CpG islands (Sutherland

et al. 1992). The enzyme is used on size-selected (1.5–4.0 kb) DNA
to fractionate unmethylated (i.e., gel-purified high molecular
weight) DNA after digestion, which is comparatively (two-color)
hybridized with DNA similarly processed but not cut with the
enzyme, on high density arrays. The original method was devel-
oped for Arabidopsis (Lippman et al. 2004), where it has value in
eliminating the large fraction of methylated repetitive DNA in
the plant genome. For mammalian genome application, a selec-
tion algorithm has been applied to obtain specific array probes
thought to represent the state of a given methylation target
(Ordway et al. 2006).

Although all of the microarray approaches are in common
use, they have not been directly compared to each other, and our
original goals were relatively modest: to directly compare meth-
ods using the same DNA samples and the same arrays. However,
we found significant limitations generally to hybridization-based
methylation analysis that could largely be overcome with novel
statistical procedures and array design algorithms. As will be de-
scribed in the second portion of the paper, a fractionation
method-independent approach, termed CHARM (comprehen-
sive high-throughout arrays for relative methylation), can detect
DNA genome-wide methylation with ∼100% sensitivity and 90%
specificity.

Results

Overall design

Here we have designed a study to compare three array-based
methylation detection technologies, MeDIP as an example of im-
munoprecipitation-based methods, McrBC fractionation as an
example of restriction enzyme fractionation, and HELP as an
example of differential methylcytosine sensitive ligation-
mediated PCR. As our test samples, two paired cell lines were
used: HCT116, a highly methylated colorectal carcinoma line,
and a DNA methyltransferase I and 3B double-knockout cell line
(DKO), with comparatively low levels of methylation (Rhee et al.
2002). These data were also compared to direct bisulfite methyl-
ation analysis using the Illumina GoldenGate methylation assay
(Bibikova et al. 2006) on 1466 CpG sites in 466 genes.

For all three assay types, design-specific arrays have already
been designed, and we followed these designs, referred to here as
canonical arrays. However, to enable direct comparison on the
same arrays, samples were hybridized to NimbleGen’s Promoter 2
array and designed two tiling arrays (see Methods), which are
referred to herein as common arrays. Note that in the case of
MeDIP, one of the common arrays is the same as the canonical
array, i.e., the Promoter 2 array. Because of the flexibility of de-

Table 1. Current methods for DNA methylation analysis

No. of sites interrogated

No. of samples 1–10 10–100 100–1000 103–104 104–106 >106

100

Bisulfite sequencing
Direct hybridization HELP MeDIP

McrBC101

102

MethyLight Pyrosequencing Illumina
103 (Cost limiting)
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sign, the NimbleGen platform was used in all cases, which has
also been used by the originators of these assay systems. In each
case, a competitive hybridization approach was performed, in
which samples were differentially labeled with Cy3 and Cy5 as
described in the experimental protocols, specifically: (1) for Me-
DIP, methyl-enriched DNA with Cy5 and total DNA with Cy3; (2)
for HELP, HpaII amplified with Cy5 and MspI with Cy3; and (3)
for McrBC, methyl-depleted with Cy5, and total with Cy3. Note
that McrBC dye-swaps were created as recommended by the
original publication for mammalian DNA (Ordway et al. 2006).
However, we found that the benefit of dye-swaps does not merit
their extra cost (see Supplemental Fig. 1), thus the comparisons
shown here do not include them. The complete list of compara-
tive experiments and arrays is provided in Table 2.

To decide among various strategies for measuring the same
quantity, one looks to optimize sensitivity and specificity. Be-
cause specificity can be easily improved at the cost of sensitivity,
and vice versa, one needs to assess both independently. We de-
signed our experiments to assess sensitivity and specificity in the
practical context of detecting methylated sites. To appropriately
assess how experimental variability affects specificity, two tech-
nical replicates were performed for each method/sample-type
pair (see Table 2). Measurements of methylation should be the
same in both replicates, and deviation from equal values serves a
measure of precision, which directly affects the specificity for
measurements of methylation levels. The assessment of specific-
ity was also facilitated by the use of the DKO samples. These
provided many unmethylated sites useful for this assessment:
Methods with low specificity will be more likely to call unmeth-
ylated sites as methylated. The HCT116 samples permitted a
comprehensive assessment of sensitivity as many sites were
methylated: Methods with high sensitivity will be more likely to
call methylated sites as methylated (true positives). The Illumina
GoldenGate assay was used as a reference against which all mi-
croarray methods were compared.

Quantification of methylation measurements

For each microarray hybridization, we used the raw feature in-
tensities to form log ratios and denoted these with M, as done in
most of the microarray literature (Allison et al. 2006). The M-
values were formed so that larger values represented more evi-
dence of methylation, e.g., with MeDIP, the immunoprecipitate
intensity was in the numerator and the total DNA intensity in
the denominator. Note that each feature on the array was asso-

ciated with one M-value. Each array was then normalized so that
unmethylated regions, on average, produced M-values of 0. De-
tails of the normalization technique are available in the Methods
section. The Illumina GoldenGate platform quantifies methyla-
tion as a percentage. However, the raw data files report the Cy3
and Cy5 intensities related to the unmethylated and methylated
pseudoalleles, thus, M-values were formed in a similar way.

Note that M is a continuous variable, so that methylation
could be assessed in a quantitative way, which has not been
performed previously for array-based methylation analysis. This
is critical for biological analysis, since epigenetic information is
often chromosome-specific, e.g., imprinted genes. Furthermore,
DNA methylation may have a threshold effect for regulating gene
expression, e.g., ∼25% for E-cadherin in a broad range of cell
types (Reinhold et al. 2007). Note that transforming M directly
into estimates of absolute methylation is not straightforward.
However, later in this section we demonstrate that by simply
using cut-off values we obtain a strategy with high sensitivity and
specificity.

MeDIP is comparatively imprecise

We first assessed the precision of each method, by comparing
M-values from replicate arrays, specifically studying the distribu-
tion of the differences between replicated M-values: M1i � M2i

where i represents a feature, and 1 and 2 represent the two rep-
licate hybridizations. In principle, these values should all be 0,
since M1i and M2i were measures of the same quantity. However,
as expected, differences were observed due to natural variation in
the sample preparation and array hybridization. These differ-
ences were studied using the canonical arrays for each method,
because each method was likely optimized on their canonical
arrays and we wanted to see each method at its optimal condi-
tion in addition to the common arrays.

The standard deviation (SD) of these differences, taken
across probes, is a useful summary that relates directly to the
range of M-values one should expect from samples with no dif-
ference in methylation status. For McrBC, the standard devia-
tions (SDs) were 0.20 and 0.15 for the DKO and HCT116 samples,
respectively (Table 3). For the HELP method, the SD was 0.27 for
both samples. Finally, the MeDIP showed the worst precision
with SDs of 0.55 and 0.60 for the DKO and HCT116 samples,
respectively (Table 3). These results were for the M-values ob-
tained from the canonical arrays. A graphical assessment of pre-
cision is shown in Supplemental Figure 2.

Table 2. Microarray characteristics

Array name
Canonical
method

Genomic
regionsa Probesb

Probe
duplicatesc Distanced Sparsitye HCT116 replicates DKO replicates

Ogha1 McrBC 21,143 1 3–4 50,000 � 4 4
HELP_Promoter HELP 25,625 14–15 1 27,000 50 2 2
Promoter2 MeDIP 12,892 1–300 1 175,000 110 6f 6f

Imprint_tiling 23 1148–122,572 1 2–43 million 47 3g 3g

CHARM 43,987 1–306 1 500–50,000 35 2h 2h

aTotal number of genomic regions represented.
bNumber of probes for each region.
cTotal number of identical probes.
dMean genomic distance, in base pairs, between genomic regions.
eMean distance between probes in a region; infinite for Ogha1 which has only one probe per region.
fTwo each of McrBC, HELP, and MeDIP.
gOne each of McrBC, HELP, and MeDIP.
hOne each of McrBC and MeDIP.

Irizarry et al.

782 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on February 16, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


McrBC and HELP can discriminate DKO from HCT116

A global assessment of sensitivity was performed by comparing
the distribution of the M-values from the HCT116 and DKO
samples, i.e., a highly methylated and a highly unmethylated
reference sample, respectively. Thus the expected M-values for
DKO sample should mostly be centered at 0, and HCT116 should
be shifted to a substantial number of positive values. Figure 1
demonstrates that the MeDIP method can barely distinguish be-
tween the two cell lines of differing methylation on a global
scale, although at individual loci differences are clearly seen (dis-
cussed below). The McrBC and HELP arrays perform better at
globally distinguishing the DKO from the HCT116 sample, with
HELP to a somewhat greater degree.

Site-specific comparison of methods

The ability to distinguish sample methylation globally is not
nearly as important as the ability to detect methylation at high
genomic resolution. We therefore compared the performance of
each method at the individual CpG level using the Illumina plat-
form as reference standard, based on studies from us and others
(Bibikova et al. 2006; Ladd-Acosta 2007), as well as data from this
study shown in Supplemental Figure 3. For each method/array
combination, each CpG assayed by the Illumina platform was
matched to one M-value obtained from the microarray data. We
now describe how this mapping was obtained for each method.
For the McrBC method, we predicted the start and end of the
resulting genomic segments after cutting at every ACG or GCG.
These are referred to as the McrBC segments. For each probe on
the Illumina platform representing an ACG or GCG we assigned
two segments: those ending and starting on that CG. Next, for
each probe on the microarray, we determined which McrBC seg-
ment contained it. Finally, the median M-value for all the micro-
array probes mapped to each Illumina probe was assigned as the

microarray M-value. The McrBC canonical arrays used three to
four replicate probes for 21,143 locations, as recommended by
those authors (Ordway et al. 2006). Thus, at least four probes
were used with each Illumina probe. A similar approach was used
for the HELP method except the cleavage occurs at CCGG sites
(Khulan et al. 2006). The HELP canonical arrays used 14–15 tiled
probes in each of the HELP segments. The canonical arrays for
MeDIP were the Promoter 2 arrays, which represent 12,892 pro-
moter regions. We matched every CpG inside these promoter
regions to the closest probe also in that region. We were then able
to map CpGs represented by an Illumina probe, and included in
one of the promoter regions, to one microarray probe M-value.
Figure 2 demonstrates this comparison, using 587, 57, 51, and
1188 Illumina CpGs corresponding to specific CpGs on the Me-
DIP, McrBC, HELP, and CHARM arrays, respectively. The set of
CpG covered by all platforms was too small to provide meaning-
ful results, thus we based our comparisons on the different sets
mapped by the different array types.

Sensitivity of HELP and MeDIP depends greatly on the CpG
content

Figure 2 plots M-values from each of the microarray platforms
against the corresponding M-values obtained from the Illumina
platform. Values from the HCT116 and DKO samples were com-
bined. For clarity, in Figure 2, data are shown from one HCT116
and one DKO array for each method. Results for all other arrays,
i.e., the replicates, are similar and are shown in Supplemental
Figure 4. Figure 2 stratifies points by CpG density. The observed-
to-expected ratio for 500-bp regions was computed around each
microarray probe shown in Figure 2 (ratios are denoted with
color and with a small number inside each point). In this window
we defined the expected number of CpGs as the proportion of Cs
multiplied by the proportion of Gs. The observed-to-expected
ratio is simply the proportion of CpGs divided by the expected
proportion of CpGs. Notice that the traditional definition of a
CpG island requires this ratio to be >0.6. The probes were strati-
fied into two groups: low CpG density (ratio � 0.6) and high
CpG density (ratio > 0.6). A regression line was fitted to each
group (shown as red and blue lines for the low- and high-density
groups, respectively). The correlation between Illumina M-values
and microarray M-values is shown in Table 4. While McrBC
showed similar sensitivity for both high- and low-density groups,
HELP showed better sensitivity for the lower CpG density group
than for the higher CpG density group.

Severe bias in current methods related to segment
characteristics

For HCT116 samples, we stratified the M-values obtained from
the McrBC and HELP canonical arrays by segment size to produce
Figure 3A. Because in this sample one expects many methylated
CpGs, many large M-values are expected independent of the seg-
ment size. However, the strata related to large and small frag-
ments had substantially fewer large M-values than the middle-
sized segments. Notice in particular that the HELP method had
no sensitivity for CpGs associated with segments smaller than
300 bp. The McrBC method had no sensitivity for CpGs associ-
ated with segments larger than 1500 bp. Best results were ob-
served for segments of sizes 200–600 and 700–1200 bp for McrBC
and HELP, respectively. The segment sizes for MeDIP are unpre-
dictable, thus, this method was not included in this figure.

We also assessed the effect of CpG density with this strati-

Table 3. Global assessment of precision of microarray methods

Method DKO HCT116

McrBC 0.20 0.15
HELP 0.27 0.27
MeDIP 0.55 0.60

The standard deviation (SD), computed across probes, of the difference
between methylation measurements of replicate arrays was used to quan-
tify precision, with a lower number representing greater precision.

Figure 1. Density estimates (smoothed histograms) of the M-values
comparing DKO (gray) and HCT116 (brown) samples. Note that the
display of the overall M distribution masks differences at individual sites.
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fication approach. As in Figure 2, we formed a 500-bp segment
around the location of each probe and calculated the observed-
to-expected ratio. These were then stratified by their observed-
to-expected ratio (Fig. 3B). As first noticed in Figure 2, the HELP
method has low sensitivity for high CpG density and the MeDIP
method had low sensitivity for low CpG densities.

General limitations in single-CpG accuracy substantially
improved by genome-weighted smoothing

Figure 2 also demonstrates that, at the individual CpG level, the
agreement between microarray and Illumina reference measure-
ments leaves much room for improvement. Notice that even for
the best performing microarray-based method, McrBC, the vari-
ability seen in the microarray M-values suggests that none of the
methods will be useful in practice if one uses individual probe
level data or individual segment data. In particular, notice that a
substantial number of the M-values for the CpGs called methyl-

ated by the reference standard (Illumina,
right of the dashed vertical line) are in
the same range as most of the M-values
called unmethylated by the reference
standard (Illumina, left of the dashed
vertical line), i.e., between �0.75 and
0.75 on the Y-axis.

The fact that the methylation status
of neighboring CpGs tends to be highly
correlated (Eckhardt et al. 2006) moti-
vated our introduction of a novel strat-
egy for methylation analysis of genome-
weighted smoothing: averaging probes
within small contiguous genomic re-
gions taking into account the biases il-
lustrated in Figure 3. A novel aspect of
our approach is that we combine infor-
mation derived from the genome se-
quence with microarray data. By charac-
terizing each of the segments induced by
laboratory protocols, one can quantify
the utility of the associated microarray
data. This information is then used to
adapt the averaging used in the smooth-
ing step by assigning weights. Details on
our novel smoothing strategy are pro-
vided in the Methods section. The ca-
nonical arrays designed for the McrBC
and HELP methods use multiple array
features to probe a selected subset of the
McrBC and HELP segments described
above. These segments in the canonical
designs are not contiguous, thus
smoothing is not possible with data
from these arrays. Therefore, to enable
genome-weighted smoothing, we hy-
bridized the samples using each of the
methods, not only to their canonical ar-
rays but also to the common arrays de-
fined in Table 2, namely, the Promoter 2
and Imprinting arrays. Figure 4, A and B,
shows the resulting M-values for a
highly unmethylated region and a
highly methylated region, respectively

(actual methylation status was determined by the Illumina ref-
erence method).

Figure 4 demonstrates the advantage of genome-weighted
smoothing. In this figure, M-values are plotted against location
on the genome. The points are the M-values observed for each
probe. The averaged M-values for probes in the same McrBC and
HELP segments are shown with orange and green lines for McrBC
and HELP, respectively. The results obtained using genome-
weighted smoothing (described above) are shown with black
curves. Note that for the McrBC and MeDIP methods, the range
of the probe-level and segment M-values associated with un-
methylated (Fig. 4A) and methylated (Fig. 4B) regions overlap;
the results from smoothing do not. For example, for McrBC the
segment M-values range from �0.75 to 0.5 and from �0.75 to 3
for the unmethylated and methylated regions, respectively. The
values obtained from smoothing range from �0.2 to 0.25 and
from 0.6 to 2.5 for the unmethylated and methylated regions,
respectively. The averaging performed in the smoothing proce-

Figure 2. Comparison of method-specific methylation measurements to reference data. For the
HCT116 (brown) and DKO (gray) samples, M-values from high-throughput methods are plotted
against M-values from the Illumina reference platform. To illustrate the CpG observed-to-expected
ratio, a 500-bp window was formed around each probe; this ratio (multiplied by 10) is displayed inside
each point. A regression line was calculated and is displayed for probes with ratios <0.6 (blue line) and
>0.6 (red line).
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dure greatly reduces noise, and the fact that the averaging is
local, i.e., performed in small regions, permits us to preserve the
ability to discriminate. Supplemental Figure 5 shows examples of
various other regions illustrating the value of this approach.

The HELP method sometimes produced contradictory re-

sults at the same loci that were not apparent in the canonical
design but were easy to see in the common array design (Fig. 4;
Supplemental Fig. 5). This likely explained the lack of agreement
with the reference method (Fig. 2). Because the HELP segments
are small for the region shown in Figure 4, this result was ex-
pected, as Figure 3 demonstrates that the HELP method is not
sensitive for small fragments. Supplemental Figure 5 shows sev-
eral other examples.

CHARM, comprehensive high-throughput arrays
for relative methylation

Based on the data described above, and in particular the impor-
tance of genome-weighted smoothing and array design, we have
developed a novel platform for array-based DNA methylation
analysis. The new method is independent of platform, and it
combines the design of a novel array design and statistical pro-
cedures that perform genome-weighted averaging from neigh-
boring genomic locations. More details are provided below.

The first component of our method is a new tiling array
specifically designed to maximize the number of assayed CpGs.

Figure 3. DNA fragment-length–related biases. (A) M-values for the HCT116 sample are stratified by the DNA fragment size predicted by the McrBC
(left panel) and HELP (right panel) enzyme digestions. (B) For all three methods, a 500-bp window was formed around each probe, the observed-to-
expected ratio of CpG was calculated, and box-plots of the M-values are displayed by these ratios. Only probes related to fragments of sizes between
50 and 600 bp for McrBC, and between 600 and 1200 bp for HELP, are included.

Table 4. Correlation between microarray platforms and Illumina
GoldenGate reference data (these are computed from the points
shown in Fig. 2)

Method Overalla High ratiob Low ratioc

McrBC 0.63–0.68 0.55–0.64 0.61–0.69
HELP 0.48–0.50 0.32–0.36 0.57–0.60
MeDIP 0.21–0.38 0.30–0.45 0.03–0.29
CHARM 0.76 0.80 0.62

aRange of correlations between microarray and Illumina M-values. The
range is over all replicates.
bRange of correlations between microarray and Illumina M-values for
probes within regions with observed-to-expected CpG ratios >0.6.
cRange of correlations between microarray and Illumina M-values for
probes within regions with observed-to-expected CpG ratios <0.6.
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For the reasons stated above, we did not want to restrict our
attention to CpG islands. Instead, the number of CpGs assayed,
for which we could reliably detect methylation status, were maxi-
mized. For example, because we rely on smoothing, isolated
CpGs were not assayed. A careful analysis of different numbers of
probes included in the smoothing demonstrated that at least 15
probe intensities were needed to obtain useful results (data not
shown). The procedure for creating the array was as follows:

1) We identified all the CpGs in the genome. Any region of 300
bp with no CpGs was discarded.

2) We removed probes with multiple matches, including fuzzy
matches as defined by NimbleGen (http://www.nimblegen.
com/products/chip/index.html), to the genome.

3) Any region having a gap of �300 bp between consecutive
probes was divided into two new regions.

4) We discarded any region with fewer than 15 probes.
5) We tiled regions as possible, using 50-mers 35 bp apart. One

can also prioritize for economy to limit to a single array by
calculating the ratio of CpGs per probes in the region and by
assigning higher priority to those with a higher ratio.

This array design would improve the detection strategy for
any of the methods because it facilitates the smoothing strategy

and assays many more CpGs. Probes associated with problematic
segments (e.g., very small segments in the HELP assay) could be
removed in the analysis stage. However, we selected McrBC for
the application of this approach because of its superior sensitivity
and specificity described earlier. Going forward, samples were
also hybridized using the CHARM design as well as the MeDIP
assay as well. We did not continue to use the HELP assay mainly
because of its limited number of detectable sites (HpaII depen-
dence).

To detect methylated regions in the CHARM method, the
M-values were normalized, as described in the Methods section,
and processed using genome-weighted smoothing, as described
above. Figure 2D shows the smoothed M-values obtained from
CHARM plotted against the reference M-values. Comparing Fig-
ure 2D with Figure 2, A–C, demonstrates how CHARM greatly
improved the results obtained with the other methods.

Although it is potentially useful to treat methylation state as
a continuous variable (Rakyan et al. 2004), the state of individual
CpGs is strongly bimodal. Therefore, besides comparing quanti-
tative results among methods, it is also important to also deter-
mine the ability to discriminate highly methylated from highly
unmethylated sequences, a common question in molecular biol-
ogy, e.g., in generating lists of candidate genes subject to epige-

Figure 4. M values plotted against contiguous locations on the genome for all three methods. The points are the observed M-values. The M-values
for probes in the same predicted segments for McrBC and HELP were averaged and are represented in the figure with orange and green lines,
respectively. The data were smoothed using running medians with a window size of 7 and showed the results with black curves. CpG locations are shown
as black tick marks at the top of the plots. (A) Segment showing lack of methylation determined by the Illumina platform. (B) Segment with high
methylation as determined by the Illumina platform. The Illumina probes and measured methylation percentages are shown on the bottom of the plot.
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netic regulation or alteration in disease. This binary classification
also enabled us to construct receiver operating characteristic
(ROC) curves (Fig. 5). ROC curves plot the sensitivity vs.
(1 � specificity) for a binary classifier system (methylated or not)
as discrimination thresholds (values of M) are varied. For this
purpose, a genomic region was defined as “methylated” if all
probes from the Illumina platform in the region were >90%.
Similarly, unmethylated regions were defined as those with all
probes <10%; 100 Illumina probe sets fulfilled these criteria. If
the smoothed M-value within any of these regions was above a
predetermined threshold, the region was considered methylated.
Various thresholds were considered, and each defines a point in
the ROC curve. The results greatly improved with CHARM. No-
tice that for a specificity of 90%, the McrBC sensitivity improved
from 60% without CHARM to 100% with CHARM.

Finally, we note that the CHARM method, unlike MeDIP,
HELP, or nonsmoothed McrBC, is highly quantitative, meaning
that there was a linear relationship between methylation measured
on the array and the reference methylation platform (Illumina),
as shown clearly in Figure 2. The correlation coefficient compar-
ing these two values was substantially better for CHARM compared
to the other methods (Table 4), as was the ROC curve (Fig. 5).

Discussion

In summary, there are two major results of this work. First, we
have shown that there are substantial limitations to all three
commonly used approaches for array-based DNA methylation
analysis. In the case of MeDIP, the assay is of relatively worse
specificity, and the method is not sensitive, particularly outside

of CpG islands. HELP, while accurately distinguishing markedly
different cell types globally, does not cover many CpG dinucleo-
tides because of the dependence on HpaII restriction sites and
often shows lack of agreement with the reference method. Of the
three approaches, McrBC performed the best, but as seen in the
ROC curves, the sensitivity was only 60% at 90% specificity as
previously practiced. Second, since neighboring CpGs have been
shown to be closely correlated, we developed a novel genome-
weighted smoothing algorithm to measure methylation from
raw microarray data. Combining this novel approach with the
most robust method for fractionating methylated DNA (McrBC),
we designed custom arrays ideally suited for methylation detec-
tion, as defined in the Results section. This approach is termed
“comprehensive high-throughput arrays for relative methyla-
tion” (CHARM). CHARM offers the possibility of relatively inex-
pensive genome-wide analysis with high precision and accuracy.
On the NimbleGen HD2 arrays, 2.1 million features can be stud-
ied in this way. The approach was data-driven, in that it used an
independent assessment of 1466 CpG sites. Furthermore, the ge-
nome coverage on the array is genome sequence-driven, rather
than based on arbitrary assumptions about the likely location of
methylated sites (e.g., promoters) that might miss substantial
numbers of regulatory sequences. Even with this unbiased, non-
promoter-driven selection strategy, 87% of the Illumina-selected
methylation cancer panel 1 genes are present on the HD2 array.

What were the likely inherent limitations of MeDIP and
HELP shown by these experiments? The results obtained with the
MeDIP method barely distinguished the HCT116 and DKO
samples. A likely reason is that the immunoprecipitation (IP) step
is not specific, i.e., unmethylated CpGs pass the filter of IP. This
is consistent with the observation that detection was biased to-
ward very high CpG content. Furthermore, note that the IP
sample will be enriched with CpGs regardless of the number of
segments that pass the filter. This is likely to result in cross-
hybridization problems, e.g., probes with more CpGs might re-
sult in higher intensities only because of cross-hybridization with
the high CpG content sample. In expression arrays it has been
shown that background noise, such as cross-hybridization,
greatly reduces sensitivity in cases were nominal amounts of tar-
get are low (Irizarry et al. 2006). If the same phenomenon is true
in methylation arrays, then one would expect low sensitivity in
regions with a small number of CpGs (low amount of target) as
seen in the MeDIP arrays.

While HELP outperformed other methods in distinguishing
the highly methylated HCT116 from the relatively unmethylated
DKO globally, at the single-CpG level, the HELP method per-
formed barely better than MeDIP. A possible explanation for this
apparent contradiction is that the HELP method depends upon
differences in ability of a fragment to be amplified, but the PCR
step does not always amplify as expected. For example, in dense
CpG regions, the smaller pieces, which are expected to amplify,
might be too small for the PCR to work properly. Evidence that
this phenomenon is occurring is the fact that the microarray data
for HELP sometimes appears flipped in plots, such as in Figure 4:
fragments were methylation-amplified opposite from the ex-
pected. It is important to note that the canonical design for HELP
carefully selects regions where this phenomenon is unlikely to
occur. But as mentioned, this greatly limits the coverage of the
method. More sophisticated post-processing algorithms have
been and likely will be further developed to correct for measure-
ment discrepancies (Khulan et al. 2006). However, even with
minimal post-processing as done here, one can obtain very good

Figure 5. ROC curve demonstrating the advantage of genome-
weighted smoothing. We considered all gene regions represented on the
Illumina platform. For the purpose of ROC calculation, highly methylated
and unmethylated regions were compared. If all probes in the region
showed on the reference Illumina platform a methylation percentage
>90%, the region was considered a true positive. If all probes in the
region reported a percentage <10% they were considered a true nega-
tive. To define a positive from the microarray data using a window size of
1, a cut-off for the M-values was chosen. If any probe intensity within the
region was above that cut-off, it was defined as positive. A running me-
dian with a window size of 51 was then analyzed and defined a positive
in the same way, except that the smoothed results instead of the indi-
vidual probe intensities were used. Results are shown for both McrBC and
MeDIP. For a given threshold, the true-positive rate is defined as the
percentage of true-positive regions for which the microarray data sur-
passes that threshold. The false-positive rate is defined in the same way
but for the true-negative regions.
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concordance with reference measurements, as seen in Figure 2,
and more importantly good sensitivity and specificity at detect-
ing methylation sites as seen in the ROC curves in Figure 5 and
Supplemental Figure 6. CHARM also circumvents a major prob-
lem for genomic methylation analysis, namely, the importance
of detecting changes in regions of relatively low CpG content. As
shown here, MeDIP cannot detect methylation in these regions.
The limitations for HELP in these regions is that it is more likely
to miss these regions and that one cannot smooth the data to
obtain high precision, since by definition one does not observe
data from adjacent segments.

McrBC fractionation was originally applied to analysis of
the plant genome (Martienssen et al. 2005) and subsequently
used as a discovery tool for methylated CpG islands (Ordway et
al. 2006), but it has not come into common use. The original
whole-genome array design represented a few thousand seg-
ments with one probe each. In microarrays and other technolo-
gies that use hybridization, a large component of the variability
seen across measures from different probes is due to sequence
effects (Wu and Irizarry 2005). Averaging replicate probes does
not reduce this variability as they have the same sequence. There-
fore the precision is relatively low in data provided by a single probe
replicated four times, as performed by Ordway et al. (2006). McrBC
fractionation also suffers to some degree within CpG islands in the
ability to discriminate highly methylated from highly unmethyl-
ated sequences, although it still outperforms MeDIP which works
only within CpG islands (Supplemental Fig. 6).

Future work on CHARM includes the development of pre-
processing algorithms that correct for sequence and segment ef-
fects. The resulting methods should improve the performance of
CHARM within CpG islands. Finally, we note that while CHARM
offers state-of-the-art, cost-effective methylation analysis, ∼1/20
penny per measurement, second-generation sequencing will re-
duce the relative utility of arrays generally, particularly when the
goal of a $1000 genome is met. Currently, complete genome
coverage by second-generation sequencing, e.g., after bisulfite
treatment, would cost hundreds of times this amount per sample.
An alternative is fractionation of the DNA followed by sequenc-
ing, reducing the complexity of the target genome, as has been
done for specific chromatin marks (Mikkelsen et al. 2007). These
approaches hold considerable promise, but they also raise the
interesting question of what to capture. The data shown here
indicate that great care must be used in the capture strategy, and
the CHARM assay is an important step toward that. In addition,
the capture strategy also uses hybridization, so one must still deal
with hybridization-related biases until complete whole-genome
sequencing becomes inexpensive.

Methods

Cell culture and genomic DNA isolation
HCT116 cells (American Type Culture Collection) and DNMT1/
DNMT3B (DKO) cells (Rhee et al. 2002) were cultured in McCoy’s
5A modified medium containing 10% fetal bovine serum and 1%
penicillin/streptomycin. Genomic DNA was isolated from HCT116
and DKO cell lines and was prepared using the MasterPure DNA
purification kit (EpiCentre) as specified by the manufacturer.

McrBC assay sample preparation
Genomic DNA (10 µg) was prepared, and McrBC digestion and
gel fractionation were performed exactly as published (Ordway et

al. 2006). As shown in Table 2, HCT116 and DKO samples pre-
pared using McrBC were analyzed on the Ogha1 array (canoni-
cal), Promoter 2 array (common), Imprinting array (common),
and the novel CHARM array.

HELP assay sample preparation
HCT116 and DKO samples were prepared as previously described
by Khulan et al. (2006), in the laboratory of John Greally, to
avoid any issues of technical handling (Albert Einstein College of
Medicine, New York), using a total of 20 µg per sample (Khulan
et al. 2006). The LM-PCR products were labeled with Cy3- or
Cy5-conjugated oligonucleotide and random primers as previ-
ously described (Selzer et al. 2005). As shown in Table 2, HCT116
and DKO samples prepared using HpaII and MspI were analyzed
on the HELP promoter array (canonical), Promoter 2 array (com-
mon), and Imprinting array (common).

MeDIP assay sample preparation
MeDIP assay was conducted according to published methods
(Weber et al. 2005). As shown in Table 2, HCT116 and DKO
samples prepared using MeDIP were analyzed on the Promoter 2
array (canonical), Imprinting array (common), and CHARM
(common) array. As a positive control, MeDIP was validated us-
ing real-time PCR of Sat2 (Jiang et al. 2004).

Illumina GoldenGate assay sample preparation
Bisulfite conversion of 500 ng of genomic DNA was achieved
through use of the EZ DNA Methylation-Gold kit (Zymo Re-
search). All HCT116 and DKO samples were processed as de-
scribed previously on the Illumina GoldenGate methylation can-
cer panel I (Bibikova et al. 2006). A �-value of 0–1.0 was reported
signifying percent methylation, from 0% to 100%, respectively,
for each CpG site. �-values were calculated by subtracting back-
ground using negative controls on the array and taking the ratio
of the methylated signal intensity against the sum of both meth-
ylated and unmethylated signals.

Quantitative methylation analysis using pyrosequencing
One microgram of genomic DNA was bisulfite treated using the
EpiTect kit (Qiagen) according to the manufacturer’s recommen-
dations. Bisulfite treatment of genomic DNA results in unmeth-
ylated cytosine nucleotides being changed to thymidine while
methylated cytosines remain unchanged. This difference is then
detected as a C/T nucleotide polymorphism at each CpG site.

CpG-unbiased primers were designed to PCR amplify 38, 16,
and 14 CpG sites, respectively, in three genes, HLA-F, KCNK4,
and HLTF (previously known as SMARCA3), showing conflicting
methylation across MeDIP, McrBC, and Illumina assays (Supple-
mental Table 1). Nested PCR was performed under standard con-
ditions. Amplicons were analyzed on a PSQ HS 96 pyrosequencer
as specified by the manufacturer (Biotage) and CpG sites quan-
tified, from 0% to 100% methylation, using Pyro Q-CpG soft-
ware.

Microarray design
Ogha1 is the canonical array for the McrBC method: 21,143
McrBC segments are represented by one probe each. Three to
four replicate are used for each probe. The locations of these
segments were chosen by the designer based on transcriptional
start sites and CpG islands as described in their paper (Ordway et
al. 2006). The HELP promoter array is the canonical array for the
HELP method. The Promoter 2 array is one of NimbleGen’s off-
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the-shelf products, with 12,892 promoter regions. The Imprint_
tiling array represents 23 regions chosen by our group to study
imprinted genes. Region sizes ranged from 133,475 to 13,096,022
bp, and probes of size 50 bp were tiled at 47 bp from each other
with an occasional large jump to avoid repeat elements. Table 2
provides a summary of these arrays.

Data analysis

Normalization
As described above, the basic measurement used to quantify
methylation is the log-ratio of the intensities observed in the
treated and control channels. Existing statistical methods have
used the unadjusted log-ratios, assumed linear dye log-scale ef-
fect and removed these effects by simply subtracting the median,
and fitting and removing the effect within an ANOVA model
(Kerr and Churchill 2001). These methods fail to correct for the
strong nonlinear effects seen in M versus A plots. In expression
arrays, Loess normalization has been widely and successfully
used to solve this problem (Yang et al. 2002). The basic idea in
this procedure is to assume that for most probes genes are not
expressed and M = 0 and that A-dependent deviations are a
smooth function. The bias is estimated and removed using Loess
regression. This approach has been successful in expression ar-
rays. However, because in methylation experiments we expect
many sites to be methylated, one can no longer make this as-
sumption. If Loess normalization were used here, and we define
M = 0 as the average value of unmethlyated sites, then one would
incorrectly force M = 0 for many of the probes associated with
methylation.

We therefore developed a method that does not require the
assumption that M = 0 for most probes. This method used ge-
nome sequence information and our knowledge of the fragment
selection method to select what we call pseudo-housekeeping
probes for which one can in fact assume M = 0. We then apply
the Loess normalization procedure developed for expression ar-
rays to the pseudo-housekeeping genes, obtain the correction
curve, and use this curve to correct M-values for all probes. An
additional advantage of this approach is that it provides a flexible
way to adapt existing techniques, developed for expression ar-
rays, to methylation data. Details of this normalization proce-
dure are described in Bolstad et al. (2003).

Genome-weighted smoothing
To obtain a smoothed M-value at any given genomic location, we
average all the M-values that were within a prespecified distance
from the location in question. A weighted average was used with
the weights determined from the results presented in Figure 3.
Notice that this part of the procedure is method-dependent. The
interval providing the values that are averaged is referred to as
the “smoothing window” and its length is referred to as the “win-
dow size.” Many smoothing algorithms exist, each one averaging
in a different way, e.g., assigning distance-dependent weights.
For the results presented in this paper, the running median al-
gorithm (Tukey 1977; Hardle and Steiger 1995) was used, with a
window size of 51 probes (∼1500 bp), due to its simplicity and
robustness to outliers.
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