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Outline

• Discuss basic Markov models.

• Discuss a few applications.



Markov Chains

• Markov models are the basis for many gene
prediction programs such as GeneMark.
 GeneMark uses Hidden Markov models.

 We developed a sequence prediction algorithm
based on Markov chains called BAMM.

• Can apply to any sequence of information:
nucleotide, amino acid, etc.



Markov models 101

• Markov models can be used to both
generate & classify sequence data.

• The sequence frequency information
must analyzed first, then it can be
used.

• Let’s get a feel for Markov models with
an analogy..



Fill in the blank…

i. th
ii. gol
iii. fluff
iv. dinosau

q r t e d u o s f m a y
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Markov chain fundamentals

• The number of “letters” remembered
by the Markov chain are known as its
order.

• Markov chains can generate the next
letter in the sequence based on the
model frequencies.



Markov chain fundamentals

• Longer words like “dinosaur” were
easier to guess than shorter ones like
“gold” (could have been “golf”).

• Larger order Markov chains generally
do better prediction.



Markov chains for Prediction

• Earlier you became human Markov
models to generate words using your
knowledge of English.

• What if I only gave you a sequence of
characters & wanted to know which
language it was???



Español or English?

tsnottearittheysaidto
oneanothertetsdecid
ebylotwhowillgetitthi
shappenedthatthescr
ipturemightbefulfille
dthatsaidtheydivided
myclothesamongthe
mandcastlotsformyg
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idamossedijeronunosa
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araveraquienletocayasi
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stosucedioparaquesec
umplieralaescrituraque
diceserepartieronentre
ellosmimantoysobremir
opaecharonsuer
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Doing Prediction

• Frequent patterns (words) help you
see the language or model
classification.

• It’s difficult to make sense of the
sentences without knowing where to
start reading.



Help with Reading Frame

tsnottearittheysaidtooneanotherLe
tsdecidebylotwhowillgetitThishapp
enedthatthescripturemightbefulfill
edthatsaidTheydividedmyclothesa
mongthemandcastlotsformygarme
ntSothisiswhatthesoldi



Training for the Unknown

• Suppose you don’t know either language.

• How do you do prediction without learning
the meaning of every word in each
language?

...beschlossensiediesesuntergewandwollen…



Training a Model

• You’d read lots of
books in each
language & learn
the frequent words!



Example Training

• BAMM project used 6 million
nucleotides of exons and introns each.

• 3 million bases are used to test
prediction.



Markov chain types

• Inhomogeneous Markov models can
“see” multiple reading frames.
 Helps detect coding sequences.
 More accurate.

• Homogeneous Markov chains don’t
care.



How does it work?

• Suppose we have been reading a lot of
naturally occurring sequences
represented by the alphabet {A,B} and
have come up with some frequencies.

• We can use this information for
sequence generation (modeling) and
classification (prediction).



Markov generation

• Generating a
sequence
using a
Markov model
requires
training first.

• Frequency
data is for
order 1
generation.



Markov generation

• To start the
sequence, we
use our initial
probabilities.

• Generation is
random, so
each sequence
can be unique.



Markov generation

• Order-dependent
transition
probabilities are
used to generate
the next letter in
the sequence.



Markov generation

• Relative frequencies
are used for the
transition
probabilities.

• These probabilities
depend of the prefix
[boxed], whose length
is the order.



Markov generation

• Each new letter
depends on the
prefix, usually 0 to
5 bases for
nucleotide
sequences.



Markov generation

• The Markov chain
algorithm
continues as
before until the
desired number
of letters is
generated.



Markov generation

• While any
permutation of
the sequence is
possible, not all
sequences will be
equally likely...



Testing probability

• Suppose we have two sequences:
 BBBB
 ABAB

How likely is each sequence?  Recall:
Single
A = 60%
B = 40%

Double
AA = 15% AB = 35%
BB = 15% BA = 35%



Probability of BBBB

• For the BBBB sequence, we get:
 B (0.40) -> B (0.30) -> B (0.30) -> B (0.30)
 Total probability = (.4)(.3)(.3)(.3) = 0.0108

What about ABAB?

Initial:
B = 40%

Transitions used:
B -> B = 30%



Probability of ABAB

• For the ABAB sequence, we get:
 A (0.60) -> B (0.70) -> A (0.70) -> B (0.70)
 Total probability = (.6)(.7)(.7)(.7) = 0.2058

• ABAB is a more probable.
 Prob(ABAB) = 0.2058 > 0.0108 = Prob(BBBB)

Initial:
A = 60%

Transitions used:
A -> B = 70%
B -> A = 70%



Models

• The total probability was determined by the initial &
transitions probabilities.  These probabilities
characterize our model.
 Let’s call our previous example the “Ab model.”

• Now consider a null model for uniformly random
sequences:

Single
A = 50%
B = 50%

Transitions used:
AA = 25% AB = 25%
BB = 25% BA = 25%



Now under the null model

• Prob(BBBB | null) = (0.5)4 = 0.0625
• Prob(ABAB | null) = (0.5)4 = 0.0625

• Given sequence ABAB, what is the
probability of the “Ab model” being
used to generate it & not the null one?



A little likelihood

• Probability of “Ab model” given ABAB is
about 77% versus the null model.

• Probability of “Ab model” given BBBB is less
than 15% versus the null model.



Feeling the Odds

• Given some sequence S, what are the
odds of that sequence being the “Ab
model” versus null?



Feeling the Odds

• For the odds of ABAB we can see that:
 0.767/(1-0.767) = 3.29 = 0.2058/0.0625

• The odds of BBBB are: 0.172

• Normally, since Markov chains deal with very small
probabilities, the chain is calculated in log-space.

• The score of a sequence being “Ab model” versus
null is the log odds.
 Score(BBBB) = log(0.172) = -0.762
 Score(ABAB) = log(3.29) = +0.517



Markov chains in demand

• Markov chain log probabilities (or log
odds) can be used by themselves or as
part of more complicated prediction
algorithms.

 Hidden Markov model

 Support vector machines (BAMM)



Binary-abstraction Markov model

“G” or not “G”, that is the question:



Abstraction Rule

• Abstraction rules indicate how to
reduce nucleotide information into a
binary code.

• Abstraction rules depend on the
nucleotide word length.



How many ways can I reduce
nucleotide information?

1.16 x 10772564
1.84 x 1019643

65,536162
1641

# Abstraction Rules# WordsWord
Length



Nucleotides Words of Length 3

*G+C means “G or C”



Binary-abstraction Markov model

• Binary-abstraction Markov models allow one
to analyze longer nucleotide sequence
words by reducing the information
analyzed.

• Analogous to replacing all articles in a
sentence with ‘A’, verbs with ‘V’, and nouns
with ‘N’, except in our case one must find
what to replace first! Units of meaning are
not obvious.



Profile HMMs

• Uses protein multiple sequence
alignments to build an HMM profile of
related proteins.

• The profile can be used to search for
remote protein homologues within
databases.



HMM Modeler

• Customizable profile HMM tool for remote
homologue identification.
 Implemented as a Chimera plug-in.
 Joint effort of the Salzburg University of Applied Sciences with Salzburg

University

• Astral Protein Database has protein sequences
with less than 40% identity.

• SCOP protein families are grouped by structure.



Sample Alignment

Protein ID
Insertion

DeletionMatch Column



Profile HMMs

• Match columns, deletions, and
insertions are used to develop the
profile HMM of the protein family.

• One can search protein databases
using the profile, and based on the
query score, filter for membership.



Evaluating remote homologues

• Scores are
corrected for
length bias.

• A null distribution
is created of non-
protein-family
scores.

• Scores that exceed
a threshold of
significance, say
greater than 95%
could be counted.

Significant



Simulating Proteins with Markov models

• Generated null distribution with
Markov chain simulated proteins.



Simulating Proteins with Markov models

• Simulated proteins are generated from Astral database
frequency information for Markov order 2.

• Which is the biological distribution?



Simulating Proteins with Markov models

• Simulated proteins can smooth the null distribution
or reduce computation time.

simulatedsimulated biological



In Conclusion

• Markov chains can be used for any
sequence data.

• Useful in gene prediction, remote
homologue identification, and much
more.

• Can be used to generate AND
discriminate sequence data.



Thank you for your attention.

Questions? 问题?

¿Preguntas? Fragen?

вопросы? 質問か。


