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ABSTRACT

In 1974, Takeo Maruyama deduced that neutral mutations should, on average, be older than deleterious or ben-
eficial ones. This theory is based on the diffusion approximation for a branching process, which considers muta-
tions independently of one another and not as multiple groups of interconnected mutations with strong linkage
disequilibrium (haplotypes). However, mammalian genomes contain thousands of haplotypes, in which benefi-
cial, neutral, and deleterious mutations are tightly linked to each other. This complex haplotype organization
should not be ignored for estimation of allelic ages. We employed our GEMA computer simulation program for
genome evolution to re-evaluate Maruyama's phenomenon in modeled populations that include haplotypes ap-
proximating real genomes. We determined that only under specific conditions (high recombination rates and
abundance of neutral mutations), the deleterious and beneficial mutations are younger than neutral ones as pre-
dicted by Maruyama. Under other conditions, the ages of negative, neutral, and beneficial mutations were almost

the same.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Investigations of “allelic age” began in 1970s. This term was defined
as the number of generations a mutant allele has persisted in the popu-
lation since its first occurrence [7,10-12]. Initially, the prediction of alle-
lic age relied upon mathematical modeling—a diffusion approximation
for a branching process. In 1973, Kimura and Ohta [7] inferred that the
“average ages of neutral alleles, even if their frequencies are relatively
low, are quite old.” Specifically, they demonstrated that a neutral muta-
tion whose current frequency is 10% has an expected age (measured in
generations) roughly equal to the effective population size N,. This re-
sult complicates experimental verification of allele age predictions.
Thus, allelic age estimates currently come from either mathematical
modeling or indirect experimental hints about the distribution patterns
of mutations with various population frequencies. In 1974, Takeo
Maruyama [11] modeled semidominant mutations and made a princi-
pal prediction that neutral mutations, on average, are significantly
older than both deleterious and beneficial alleles. This prediction has
been widely accepted and became an important landmark in this field.
A year after Maruyama's paper, Wen-Hsiung Li [10] inferred the age
of deleterious mutations having various degrees of dominance. He dem-
onstrated that the mean age decreases with increasing selection coeffi-
cients against heterozygotes. Allelic age has been nicely reviewed in the
late 1990s [5] and early 2000s [18]. The allelic age has been indirectly
estimated in several independent experimental studies that statistically
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examined the distributions of multiple mutant alleles. Slatkin and
Rannala [17] estimated the allelic age by use of intra-allelic variability.
Further, Rannala and Reeve applied high-resolution multipoint
linkage-disequilibrium mapping [14], while Genin and colleagues ana-
lyzed shared haplotypes of rare disease mutations [4]. Last year, Kiezun
and co-authors [6], concluded from analysis of large-scale population
sequencing studies and computer simulations, that deleterious alleles
in the human genome are on average younger than neutral alleles of
the same frequency. However, the allelic ages for neutral, deleterious
and beneficial mutations are still unclear because the direct measure-
ment of the age is impossible.

Recent whole-genome sequencing of numerous individuals revealed
that each human individual bears millions of mutations [1]. These mil-
lions of mutations form intricate patterns of haplotypes, where neutral,
beneficial, and deleterious mutations are tightly linked with each other
and strongly influence the ages of their neighbors. A haplotype structure
for a gene strongly depends on the local recombination rate, which may
vary thousands of times from one chromosomal location to another [2].

In order to examine the role of haplotypes on the allelic age, we ap-
plied whole-genome computer simulations of SNP dynamics using our
GEMA program package. A “naturally occurring” intense influx of 40
novel mutations per person has been applied in this computer model-
ing. Such intense mutation influx generated thousands of SNPs in each
modeled individual. The time of the arrival for each mutation has been
recorded and used for the calculation of its age. These simulations
allow the direct measurement of the average age of mutations with
high accuracy. In these computational experiments, we changed various
parameters such as recombination rate, degrees of dominance, and dis-
tributions of mutations by their selection coefficients. These various
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conditions drastically altered the patterns of haplotype ensembles in
the modeled genome. We demonstrated that Maruyama's effect
appears only for specific sets of parameter ranges and quantitatively
described its variation under different conditions.

2. Materials and methods

Computer simulations were performed using a new v3 release of our
Perl program GEMA_v3.pl, named Genome Evolution with Matrix Algo-
rithms (GEMA). The previous release (GEMA_v2.pl) has been described
in detail [13]. Both v2 and v3 versions are freely available from our web
site: http://bpg.utoledo.edu/~afedorov/lab/GEMA.html. The V3 release
of GEMA has only a small addition compared to v2, which, upon crea-
tion of a new mutation, records the time of its arrival (measured in
generations, as $g variable inside a multidimensional array @matrix).
Finally, the age of every SNP is periodically recorded into a new fifth
column of the GEMA backup file.

In the described simulations with GEMA_v3.pl, we always used the
following parameters: (1) unsaturated mode; (2) duration: 10,000
generations; (3) population size (N = 100); (4) number of offspring
per mating pair (o = 5); (5) mutation rate per gamete (u = 20); (6) re-
combination rate (r = 1 or r = 48); (7) dominance coefficient (h = 0,
h=0.5,or h =1); (8) MatingScheme: permanent random male-female
pairs; and (9) upon generation of a random mutation, a random number
generator imbedded into GEMA program assigned a selection coeffi-
cient to it either according to the “experiment B” or “experiment C” dis-
tributions demonstrated in Fig. 1. Experiments B and C were first
described in our paper [13], and we kept their original names in this
paper for clarity. Those two experiments were chosen for the ease of in-
terpretation of the results. The effects of all deleterious mutations in
these experiments are equal to each other since their selection coeffi-
cients (s) always equal to — 1. Consequently, all beneficial mutations
are also equal to each other (s = +1 for all beneficial mutations).

Our GEMA modeling approximates natural conditions in a way in
which we consider thousands of genes in genome of virtual individuals
and the real influx of novel mutations (which is about 40 new mutations
per individual). As we demonstrated in Qiu et al. [13], several hundreds
of genes in the modeling genome have approximately the same effect
on SNP dynamics as 25,000 genes observed in humans. In addition,
the length of modeling genes does not significantly influence the SNP
dynamics. Due to these reasons and for the speed of computations, we
used a 0.6 Mb long DNA segment with a random nucleotide sequence
as the genome for modeled individuals. Thousands of nucleotide-long
segments of this sequence were used to model 600 genes. The simplifi-
cation of our modeling, compared to real conditions, is that all genes in
our simulations have the same properties. This includes the same re-
combination rate, same frequencies of deleterious, beneficial, and
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Fig. 1. Distribution of computer-generated mutations by their selection coefficients
(s-values). B—"“Experiment B” models a discrete distribution of mutations characterized
predominantly by neutral mutations, occurring at a frequency of 90% within the population,
while the remaining 10% is characterized by deleterious and beneficial mutations occurring
in aratio of 9:1. C—In “Experiment C,” the ratio of deleterious to beneficial mutations occurs
again in the ratio of 9:1. However, this model is characterized by a preponderance of muta-
tions with deleterious effects (81%). Neutral mutations in this case comprise 10% and ben-
eficial - 9% of overall nucleotide changes occurring within the population.

neutral mutations and the same dominance coefficient. In real human
genes, these parameters vary significantly from gene to gene. However,
these simplifications allow us to evaluate the influence of each parame-
ter on the dynamics of SNP in the population.

The snapshot of all SNPs in all modeled individuals was recorded
after every 1000 generations as backup files. These backup files contain
the following information on each SNP: position; selection coefficient;
mutant nucleotide; modeled individuals bearing this SNP including
location on a maternal or paternal DNA; and the time of SNP arrival
(in generations). Backup files was processed with our Perl scripts
AllelicAge_10bin.pl and AllelicAge_csv.pl, that calculate the frequency
of each SNP, its selection coefficient and the time of its arrival, and pres-
ent this information in an output table in Excel format (Supplementary
Materials, Tables S1 and S2). These tables were used to calculate the dis-
tribution of SNPs by their population frequency, the number of SNPs
with particular selection coefficient within a designated range of popu-
lation frequencies (from 10% to 30% range or in 40%-60% range), and the
distribution of SNPs within a particular range of population frequency
by their age. The SNP frequency stands for the frequency of the mutant
alleles in the entire modeled population.

3. Results

Computer simulations of whole-genome SNP dynamics were per-
formed using the program GEMA_v3.pl. In these computations, the fol-
lowing three parameters were always the same for every experiment:
(1) population size was 100 modeled individuals (N = 100); (2)
every modeled individual had 40 novel mutations (¢ = 20 mutations
per gamete); and (3) the mating scheme was a default GEMA
choice—permanent random male-female pairs (MatingScheme = 1)
with 5 offspring per mating pair (o = 5). Also, genomes of modeled in-
dividuals always consisted of 600 genes each 1000 nucleotide long. [As
we discussed previously, the exact number of genes above a certain
threshold (~200) does not significantly influence SNP dynamics [13]].
Variable parameters for each computational experiment were the fol-
lowing: (1) number of recombination events per gamete (r) was either
r=1orr=48; (2) gene dominance coefficient (h) for every gene was
either h = 0 (dominant genes), h = 0.5 (co-dominant genes),or h = 1
(recessive genes); and (3) distribution of mutations by their selection
coefficients corresponded to the “Experiment B” or “Experiment C”
shown in Fig. 1. We specifically used r = 48, because it represents the
average number of pieces of paternal and maternal genomes in a
human gamete [13]. The alternative r = 1 settings model the regions
with low recombination rate frequency, which are abundant in the
human genome.

The distribution of SNPs by their age for different modeled parame-
ters is shown in Fig. 2. This distribution has been combined for 12
independent experiments. The total number of all SNPs in specific ex-
periment varied from 152,582, for simulations with r = 1, h = 0, and
“experiment C”, to the 505,970 SNPs for r = 1, h = 1, and “experiment
B” simulations. Since the number of SNPs varies from one experiment to
another, we performed their normalization by division by the total
number of SNPs in each experiment. Hence, the results in Fig. 2 are pre-
sented as relative SNP frequencies counted within 10-generation bins.
The details for every SNP from these data are provided in the supple-
mentary Table S1. In all experiments the youngest SNPs were the
most numerous ones, as expected from population genetics. We ob-
served that, when the recombination rate was high (r = 48), the older
SNPs were more abundant than when the recombination rate was low
(r=1). A special case that does not follow this rule is provided by the
combination of low recombination rate (r = 1) with recessive domi-
nance coefficient (h = 1). As we explained previously [13], these specif-
ic conditions may result in an un-stable number of SNPs in the
population, periodically producing gigantic peaks of SNP numbers.

The calculated mean age of SNPs, for which population frequencies
belong to a particular range (10%-30% or 40%-60%) is shown in Fig. 3.
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Fig. 2. Distribution of relative frequencies of all SNPs in population by their age (measured in generations since SNP arrival). The extreme right block of columns marked as “1000” on the
horizontal axis shows the relative frequencies of all accumulated SNPs at 110-1000 generations.

These SNPs were grouped by their selection coefficients (s) into being
deleterious (s = — 1), neutral (s = 0), or beneficial (s = +1). Fig. 3
illustrates that recombination rate (r), dominance coefficient (h), and
the distribution of mutation by selection coefficients (experiments B
or C) may significantly influence on the mean allelic age. In 75% of
experiments, no difference in the allelic ages for neutral, beneficial, or
deleterious mutations was detected. Only with high recombination
(r = 48) and “Experiment B” settings (90% neutral SNPs) was the
mean age of neutral mutations 1.4-2.6 times higher than for deleterious
or beneficial ones, in accordance to Maruyama's predictions [11].

Finally, the distribution of SNPs by their ages is demonstrated in
Fig. 4. For proper comparison of different experiments with various pa-
rameters, the number of SNPs has been normalized by division by the
total number of SNPs in the experiment. Thus, Fig. 4 represents SNP fre-
quency density and provides an overall view of the age distribution of
all SNPs. Statistical information about these distributions including ben-
eficial, deleterious, and neutral groups of SNPs is presented in Table 1
(detailed information on the age of each SNP is presented in supple-
mentary Tables S1 and S2).

4. Discussion

Maruyama made a non-obvious and intriguing theoretical predic-
tion about the average age of deleterious, beneficial, and neutral muta-
tions. Experimental verification of SNP age encounters two major
problems. First is ascertaining the real age of mutations that occurred
many generations ago. Second is assessing the deleterious, beneficial,
or neutral effects for mutations, which is unknown for the vast majority
of human SNPs. The unexpectedly young age has been deduced only for
several hundred mutations located in about 50 different loci that are
associated with recent strong positive selection in the human genome
[15,16,19]. Among the 22 strongest candidate loci for positive selection

in humans presented by Sabeti et al. [16] in Table 1, the authors charac-
terized 41 possibly functional SNPs and additional closely located 439
SNPs, which are in strong linkage disequilibrium and propagate with
these beneficial mutations by genetic hitchhiking. Because the set of
characterized beneficial mutations is tiny compared to all known
human SNPs, and because the set of hitchhiking SNPs is many fold larger
than the set of known beneficial SNPs, it is impossible to evaluate the
Maruyama effect from these principal public data sets. One of the
most comprehensive experimental evaluations of the Maruyama effect
has been reported by Keizun and co-authors [6]. Using whole-genome
computation analysis the authors examined thousands of putatively
deleterious missense SNPs inside protein coding sequences and com-
pared them with synonymous mutations. The authors concluded that
deleterious alleles are, on average, younger than neutral ones. However,
the analysis was qualitative and did not provide a precise quantitative
estimation of the Maruyama effect. Also, the influence of important ge-
nomic parameters on the mutation age (e.g., local recombination rates,
coefficient of dominance for genes under analysis) has not been
examined.

Presently, even with the availability of about 3,000 completed
human genomes in public databases, there is a limitation of genomic
data on families that includes sequences from members of several gen-
erations. Yet this kind of information is required for evaluating allelic
age. However, in a few years, the technology race to develop a fast se-
quencing device with “$100 per genome” capacity should be accom-
plished. With such technology, whole-genome sequencing analysis of
large pedigrees will become routine. In addition, there are several
long-running selection projects with laboratory animals (like mice
and rats), where frozen materials from animals across numerous gener-
ations have been preserved [20]. The availability of cheap sequencing in
the near future will provide unprecedented genomic data on extra-long
pedigrees, across multiple generations of humans and other species.
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Fig. 3. Mean allelic age of SNPs with different selection coefficients calculated for different experimental conditions. Allelic age was measured in generations passed after the SNP arrival.
All analyzed SNPs had current population frequencies in the range from 40% to 60% (Panel A) or in the range from 10% to 30% (Panel B). Each error bar reflects 95% confidence interval (CI)
for the respective experiment. The modeled selection coefficient (s) for each SNP had three possible values: either + 1 (for beneficial mutations), O (for neutral mutations), or —1
(for deleterious mutations). All computations were performed for a population size of N = 100; twenty novel mutations per gamete (1 = 20) and five offspring per individual (o = 5).
In each individual experiment, the modeled number of recombination events per gamete was either r = 1 or r = 48; the dominant coefficient for each gene was h = 0 (dominant
genes), h = 0.5 (co-dominant genes), or h = 1 (recessive genes). The distribution of mutations by selection coefficients was either from “Experiment B” (90% of starting SNPs neutral)
or “Experiment C” (10% of starting SNPs neutral), as described in Fig. 1. Exact allelic age for each SNP in these experiments is provided in Supplementary Table S2.

Such data open the possibility of a direct investigation of the fate and the
age of many mutations. Hence, a precise estimation of the Maruyama
predictions will soon be possible.

In this respect, mathematical modeling provides an important in-
sight into this problem. However, existing mathematical approaches
for inferring allelic age consider only one mutation at a time, while pos-
sible interactions of SNPs with one another have been ignored [7,10,12].
The “1000 Genomes” project recently revealed 38 million SNPs within
the pool of sequenced genomes, and demonstrated that two non-
related humans from the same population have over three million
SNP differences between them [1]. Each human gene bears hundreds
of SNPs, arranged in several major haplogroups having strong linkage
disequilibrium between SNPs from the same haplotype. Since muta-
tions never exist alone, to understand their dynamics they should be
modeled/analyzed in the context of haplotypes. Keeping this in mind,
we implemented whole-genome computational simulations to

investigate how different haplogroup structures influence the average
age of SNPs. In our GEMA simulations, we used the lowest estimated
value of the influx of novel mutations observed in humans (20 novel
mutations per gamete) [3,8,9]. Such an influx, even in a very small pop-
ulation of 100 modeled individuals, generates thousands of SNPs ran-
domly distributed among 600 genes. Closely located mutations are
linked together and form haplotypes. The length of the haplotypes de-
pends on the recombination rate (r).

These haplotypes compete with one another via natural selection.
Each non-neutral mutation contributes to the total fitness of the
model individual, which is calculated by taking into account all benefi-
cial and deleterious mutations and the dominance coefficients (h) of
the genes in the modeled genomes. In our simulations we applied the
ultimate selection mode, in which only the fittest offspring survive
and form the next generation. Our computations demonstrated that
the recombination rate, dominance coefficient, and overall distribution
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Fig. 4. Distribution of SNPs by their age. Panel A—shows all SNPs having frequencies from 40% to 60% in the population. Panel B—all SNPs having frequencies of 10% to 30% in the popu-
lation. Each curve represents an experiment with specific h and r parameters. The exact numbers of SNPs in the experiments are provided in the Table 1 and Supplementary Table S2.

Table 1

Distributions of beneficial, deleterious, and neutral SNPs by their ages. The parameters provided in the table are the following: s—the selection coefficients of SNPs; r—recombination rate;
h—dominance coefficient; <age> 4+ Cl—mean allelic age and its 95% confidence interval; STDEV—standard deviation for the distribution of SNPs by their ages; #SNPs—number of SNPs; and
“F Range”—the SNP population Frequency range for the analyzed SNPs (“high” = 40%-60%; “low” = 10%-30%).

Experiment C Experiment B
r h s <Age > £ (I STDEV No. SNPs Frange r h s <Age > £+ (I STDEV No. SNPs Frange
1 0.5 -1 517 £ 1.4 345 2417 High 1 0.5 -1 463 + 2.6 28.5 471 High
51.1 £3.1 346 480 0 495+ 03 31.0 34241
51.7 £ 24 327 732 1 476+ 15 30.1 1476
48 0.5 -1 160.5 + 3.2 108.4 4338 High 48 0.5 -1 130.5 + 32.1 83.4 26 High
1764 £ 55 121.6 1881 0 1879 £ 0.8 1321 92944
160 + 34 108.5 3803 1 83+ 1.6 48.8 3417
1 0.5 -1 299 4 0.6 26.5 8467 Low 1 0.5 -1 263 £ 0.8 21.5 2985 Low
302+ 13 26.0 1480 0 317+ 0.1 26.0 128074
328+ 1.2 28.7 2041 1 321+08 25.8 4166
48 0.5 -1 83741 80.1 26786 Low 48 0.5 -1 40.7 + 1 303 3265 Low
100.2 + 25 98.5 6148 0 1053 £ 0.3 106.4 462951
97.8 £ 2.1 93.8 7923 1 522 +09 424 9415
1 0 -1 25+09 129 878 High 1 0 -1 274 +£6.2 10.0 10 High
251423 14.0 145 0 40.7 + 0.8 209 2800
24+19 11.6 149 1 399 +94 24.0 25
48 0 -1 145.7 £ 25 99.5 6175 High 48 0 —1 118.2 + 564 70.5 6 High
0 152 + 4.7 104.3 1857 0 2093 4+ 2.2 152.1 17704
1 149.2 4+ 4.1 102.7 2458 1 1004 + 8.5 57.2 173
1 0 -1 156+ 0.2 83 4893 Low 1 0 —1 20+ 19 122 161 Low
0 15.8 + 0.6 85 832 0 27+03 184 13366
1 15.6 +£ 0.6 8.5 752 1 248 + 2.7 16.6 144
48 0 -1 764 £ 0.9 774 26512 Low 48 0 —1 54.6 +£ 16.7 87.1 105 Low
85.6 + 2.4 87.9 5208 0 1159+ 1 122.2 61609
85.8 + 2.2 85.9 5871 1 65.9 + 5.1 63.4 599
1 1 -1 3356 + 3.2 262.7 25814 High 1 1 —1 384.7 +£ 135 3143 2077 High
3332482 266.2 4076 0 376 +£3 306.0 40146
32914+ 7.1 257.4 5111 1 3804 4+ 17.2 316.6 1295
48 1 -1 1714 +£3 1142 5655 High 48 1 —1 1213 £ 184 74.6 63 High
184.5 4+ 53 1219 2018 0 1948 +2 1383 18575
165.5 + 3.5 110.5 3789 1 98.8 +£3.9 62.9 1018
1 1 -1 1849 + 1.6 222.2 76851 Low 1 1 -1 199.2 + 5.7 257.5 7813 Low
1854 + 4.2 2203 10558 0 2017+ 16 258.1 99795
1884 + 4.2 227.7 11271 1 2042 4+ 11.7 265.1 1960
48 1 -1 913+ 09 87.8 35368 Low 48 1 -1 67 + 2.1 53.2 2455 Low
104.1 £ 25 102.5 6596 0 108.7 £ 0.9 110.2 58373

1 100.2 2.2 98.4 7825 1 525+ 25 44.6 1216
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of the entire pool of SNPs by their selection coefficients significantly af-
fect the mean allelic age of SNPs. The Maruyama effect [11] was detected
only when the recombination rate was high (r = 48) and the neutral
mutations were overabundant (90% of SNPs are neutral in Experiment
B). Under these conditions, the average age of neutral mutations was
1.4 times higher than deleterious and 2.3 times higher than beneficial
ones (Fig. 3 and Table 1). However, under the same conditions (r =
48 and h = 0.5) if the frequency of neutral mutations is decreased to
10% and the frequencies (but not ratio) of deleterious and beneficial
mutations are increased (experiment C), the average ages of mutations
with different selection coefficients were practically the same (no
Maruyama effect).

Our results demonstrate the fruitfulness of the whole-genome com-
putational simulation approach for population genetics, and its benefits
over mathematical modeling. All in all, GEMA programs allow investiga-
tion of the integrative effects of thousands of mutations per individual,
and evaluation of the effects of grouping of mutations into haplotypes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2015.02.005.
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