
RESEARCH ARTICLE Open Access

Intricacies in arrangement of SNP
haplotypes suggest “Great Admixture” that
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Abstract

Background: Inferring history from genomic sequences is challenging and problematic because chromosomes are
mosaics of thousands of small Identicalby-descent (IBD) fragments, each of them having their own unique story.
However, the main events in recent evolution might be deciphered from comparative analysis of numerous loci. A
paradox of why humans, whose effective population size is only 104, have nearly three million frequent SNPs is
formulated and examined.

Results: We studied 5398 loci evenly covering all human autosomes. Common haplotypes built from frequent SNPs
that are present in people from various populations have been examined. We demonstrated highly non-random
arrangement of alleles in common haplotypes. Abundance of mutually exclusive pairs of common haplotypes that
have different alleles at every polymorphic position (so-called Yin/Yang haplotypes) was found in 56% of loci. A
novel widely spread category of common haplotypes named Mosaic has been described. Mosaic consists of
numerous pieces of Yin/Yang haplotypes and represents an ancestral stage of one of them. Scenarios of possible
appearance of large number of frequent human SNPs and their habitual arrangement in Yin/Yang common
haplotypes have been evaluated with an advanced genomic simulation algorithm.

Conclusions: Computer modeling demonstrated that the observed arrangement of 2.9 million frequent SNPs could
not originate from a sole stand-alone population. A “Great Admixture” event has been proposed that can explain
peculiarities with frequent SNP distributions. This Great Admixture presumably occurred 100–300 thousand years
ago between two ancestral populations that had been separated from each other about a million years ago. Our
programs and algorithms can be applied to other species to perform evolutionary and comparative genomics.
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Background
The origin of modern humans has long been a topic of
debate and is still an area of active research. The discus-
sion of human evolution has largely progressed around
two key models namely the ‘out of Africa’ versus the
‘multi-regional’ models. While the most widely accepted
‘out of Africa’ hypothesis proposes that Homo sapiens
evolved in Africa before migrating across the world [1–4],

the opposing ‘multi-regional’ model proposes that inter-
mingling of the various populations evolving in several re-
gions over a long period of time resulted in the emergence
of the modern Homo sapiens species [5, 6]. The events
leading to the origin of Homo sapiens took place long ago,
so our direct knowledge of human evolution is based on a
limited number of fossils of archaic hominoid individuals
discovered in different parts of the world. Researchers
have widely used genomic molecular markers such as the
mitochondrial DNA (mt-DNA) and the non-recombining
region of Y chromosome (NRY) to study different aspects
of human evolution. These markers are transmitted uni-
parentally (mt-DNA maternally and NRY paternally) and
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thus have their own limitations [7]. The recent advance-
ment in next generation sequencing (NGS) has made large
scale sequencing of human genomes affordable, and has
led to a huge amount of genome wide sequencing data
from large population cohorts. Modern human genomes
preserve and carry signatures of many events in human
evolution such as population bottlenecks, migration, ad-
mixture, natural selection and genetic drift, and therefore
serve as reliably informative resources for elucidating the
history of mankind. The 1000 Genomes database includes
genetic information of 26 populations belonging to the
African, Asian, European and American ancestry. This
comprehensive resource on human genetic variation with
diverse populations is ideal for the assessment of humans
on a genomic scale. Recently our team computationally
processed this database and demonstrated that very rare
genetic variants (vrGVs, whose frequencies are less than
0.2%) are valuable markers for deciphering distant human
relatedness [8, 9]. This examination brought to light the
human migration routes and admixture that happened up
to ten thousand years ago. However, to reveal more dis-
tant events in the history of mankind, genetic variants
(GVs) with higher frequencies should be assessed. Keeping
this in mind, here we investigated the distribution and
structure of haplotypes built from the most frequent GVs
(whose minor allele frequencies (MAF) are >25%) in
people from Africa, America, Asia, and Europe (>90% of
these GVs are SNPs). Surprisingly, intricacies of dynamics
of frequent GVs and their dependence on selection, re-
combination, and population structure have been investi-
gated in only several papers [10–15]. In this paper we
have examined why modern humans have a strikingly
large number (2.9 million) of frequent GVs. These fre-
quent GVs were studied not individually but in haplotypes
– groups of 50 adjacent and closely linked GVs. Such hap-
lotypes were analyzed in 5398 segments along all auto-
somes. In a vast majority of cases a segment contains a
few common haplotypes (CHs) that are widespread in
10%–90% of people from all continents. Below we focus
our research specifically on CHs because they might have
existed in populations for hundreds of thousands years
and remain the same in a number of people from different
populations. Thus, CHs may be of functional importance
and their spread among populations and continents may
reveal critical events occurred with ancient populations.
Intriguingly, CHs very often exist in mutually exclusive
pairs. The two individual haplotypes from such a mutually
exclusive pair have different alleles practically at every GV
site. Originally, this phenomenon was investigated by
Zhang with co-authors and they named these mutually ex-
clusive haplotype pairs as “Yin” and “Yang” haplotypes
[16]. By analyzing common haplotypes in 62 random gen-
omic loci and 85 gene-coding regions in humans, the
Zhang et al. study proposed that the Yin/Yang haplotypes

are abundant throughout the human genome and are gen-
etic signatures that emerged prior to the African diaspora.
Further, the peculiarities of Yin/Yang haplotype structures
have been examined by Curits and Vine [17, 18]. Here we
confirmed the widespread distribution of Yin/Yang haplo-
types in humans and in addition revealed another widely
distributed haplotype pattern, which we named “Mosaic”.
The Mosaic haplotypes are built from multiple small
pieces of Yin/Yang haplotypes.
To understand arrangement of alleles in common hap-

lotypes, computer simulations of genome changes are
very effective. Nowadays there are dozens of well-
recognized computer programs capable of performing
such investigations [19]. Here we specifically used
whole-genome forward simulations with GEMA pro-
gram [20, 21]. This algorithm is unique from others be-
cause it considers simultaneously hundreds of thousands
of co-existing SNPs inside hundreds of genes and takes
into account such parameters as meiotic recombination
rate, selection pressure, population structure, etc.
All in all, this large-scale bioinformatics examination

suggests that modern populations were formed by the
admixture of two ancestral lineages that separated from
each other around one million years ago and re-admixed
around 0.3–0.1 million years ago.

Methods
Genotype datasets for all the human chromosomes of
the 1092 human genomes were downloaded from the
1000 genomes ftp site (ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/release/20110521/) as Variant Call For-
mat (VCF) files version 4.1 [22]. This database contains
a total of 38.2 M SNPs, 3.9 M short indels and 14 K de-
letions for all the human chromosomes that have been
used in this study. Information about parental haplo-
types has been taken directly from Phase 1 of 1000
Genomes Project, since its genomic sequences were en-
tirely “phased”. Ancestral/Derived status for every GVs
was obtained from the “AA=” field inside column 8 of
the 1000 Genome VCF files.
For the archaic Neanderthal genome sequence we used

Denisovan genomic datasets from the Max Plank Insti-
tute for Evolutionary Biology that are available through
public ftp site http://cdna.eva.mpg.de/denisova/VCF/
hg19_1000g/(23). These Denisovan Variant Call Format
(VCF) files contained coverage of the genome that is
fairly uniform with 99.93% of the ‘mappable’ positions
covered by at least one, 99.43% by at least ten, and
92.93% by at least 20 independent DNA sequences [23].
We computationally processed the Denisovan VCF files
with our novel Perl scripts (Denisova_Haplo_Find.pl,
Deni_Stat_generator.pl), which are available from the
Additional file 1: SD1 on our web page (http://bpg.utole-
do.edu/~afedorov/lab/YinYang.html).

Dutta et al. BMC Genomics  (2017) 18:433 Page 2 of 13

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://cdna.eva.mpg.de/denisova/VCF/hg19_1000g/(23
http://cdna.eva.mpg.de/denisova/VCF/hg19_1000g/(23
http://bpg.utoledo.edu/~afedorov/lab/YinYang.html
http://bpg.utoledo.edu/~afedorov/lab/YinYang.html


All haplotypes of 1092 individuals were obtained with
our pipeline of eight Perl programs (HaploFind.pl; Hap-
GroupGenerator.pl, MosaicStatGenerator1.pl, MosaicStat
Generator2.pl, MosaicStatGenerator3.pl, YinYangStatEx-
plorer.pl, MosaicStatExplorer.pl, CombineStatsYY_Mos
.pl, AncestralHapMatchFinder.pl). A thirty-five page in-
struction manual for these programs with comments
and notes is provided as a supplementary file. The pro-
gram HaploFind.pl extracts the GVs having minor allele
frequency >0.25 and constructs haplotypes with 50 adja-
cent frequent GVs. HapGroupGenerator.pl compares
2184 haplotypes from the 1092 individuals and builds
haplotype groups that contain haplotypes having < =2
differences between them. Groups with > =100 occur-
rences are classified as common haplotypes (CHs).
Other six programs have been used to compute different
statistics for Yin, Yang and Mosaic CHs. The program
Ancestral_Hap_Match_Finder.pl extracts the ancestral
haplotype for each segment and finds its matches from
the 2184 haplotypes in the 1000 Genomes populations
in the corresponding segment.
Detailed description and scripts of all our Perl pro-

grams, their instruction manuals, the command lines
for execution of programs, and examples of output
files can be found in the Additional files 2, 6, 7, 8, 9
and 10.
In addition, all our programs are freely available from

our website (http://bpg.utoledo.edu/~afedorov/lab/Yin
Yang.html). The entire dataset of all haplotypes for each
5398 chromosomal segments generated by our programs
is also available from this web site.
Computational simulations for the analysis of distribu-

tion and arrangement of SNPs in the population of
virtual individuals were performed with our computa-
tional resource GEMA (Genome Evolution with Matrix
Algorithms), which has been described by Qiu and co--
authors [20]. In these simulations we varied the size of
the population (N); the selection pressure (number of
offspring per individual - α); and the number of recom-
bination events during the gametogenesis in the ge-
nomes of virtual individuals (r). The program code and
instruction manual for GEMA are available from web
site (http://bpg.utoledo.edu/~afedorov/lab/GEMA.html)
and from the original publication [20]. All SNPs gener-
ated during GEMA simulations were processed with the
pipeline of Perl programs (GemaBackupA_Process.pl,
YinYangGema.pl, GemaSegments.pl, GemaHaploty-
pes.pl, GemaHapGroupGenerator.pl, Gema_HapGrou-
ping.pl). Perl scripts for these six programs, command
lines for their execution, and their instruction manuals
can be found in the Additional file 2 and in our website
(http://bpg.utoledo.edu/~afedorov/lab/YinYang.html).
Statistics. P-values have been calculated using chi-s-

quared test within Microsoft Excel package.

Results
Common Haplotypes (CHs)
All human autosomes have been divided into 500 Kb
segments that are uniformly separated from each other
as illustrated in Fig. 1. For each chromosomal segment,
we studied haplotypes built from 50 adjacent GVs occur-
ring with high frequency in modern humans (which
Minor Allele Frequency (MAF) was >25% among 1092
sequenced genomes). Under this consideration, the
physical length of haplotypes becomes a variable and de-
pends on the density of frequent GVs in the locus under
investigation. The invariable quantity of 50 frequent GVs
in each haplotype allowed us to make a fair comparison
of occurrences of haplotypes from different chromo-
somal locations. We chose 50 frequent GVs per haplo-
type because the average size of such haplotypes is
around 60 Kb and it is congruent with the findings of
Gabriel and co-authors who demonstrated that most of
the human genome is contained in blocks/segments of
substantial size and, within each segment, very few com-
mon haplotypes capture a vast majority (~90%) of the
chromosomes in each population [24]. In our study, po-
sitions of chromosomal segments have not been aligned
with positions of genes for the following reasons: i) posi-
tions of genes are distributed highly non-randomly along
chromosomes; ii) the sizes of genes vary considerably
from a few hundred up to two million nucleotides; iii)
the beginnings of genes often have elevated GC-
composition. Thus, our approach should present an un-
biased view on the distribution of haplotypes of frequent
GVs in the entire human genome.
Each of 1092 individuals from phase 1 of the 1000

Genomes Project is presented by two haplotypes that
correspond to two parents of the individual. The presen-
tation of haplotypes of examined individuals is exempli-
fied in Fig. 1a. In addition to haplotype data, we
extracted the ancestral/derived status for studied fre-
quent GVs from the 1000 Genomes Project dataset
(Fig. 1a). Occurrence of all haplotypes of 1092 individ-
uals have been ranked and examined throughout the hu-
man genome as explained in Fig. 1c.
For each chromosomal segment, identical haplotypes

from different individuals have been combined and
ranked according to their occurrence among 1092 se-
quenced individuals. Nearly identical haplotypes (with 1
or 2 allele differences among 50 GVs) have been placed
into the same group, which was assigned to the haplo-
type (“zeros/ones string”) with the highest occurrence.
These haplotype groups are demonstrated in Fig. 1c and
are available for each chromosomal segment from the
Additional file 1: SD1. When a haplotype group was
found 100 or more times among 1092 studied individ-
uals, it was considered as a Common Haplotype (CH).
Distribution of CHs has been examined among all
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human autosomes in 5398 segments, and these data are
shown in the Additional file 3 Table ST1. A subset of
Table ST1 is shown in Table 1 to illustrate our approach.
The basic features of CH occurrence and distribution
are illustrated in Fig. 2. These data on CHs (number,
size, occurrence) are congruent to the results of Gabriel
and co-authors [24]. Visual examination of CH strings
revealed that many segments contain mutually exclusive
CHs that differ from each other at practically every poly-
morphic position. This phenomenon is seen in Fig. 2 F
and also in Table 1, where the maximal difference of al-
lelic variants between CHs from the same chromosomal
segment is present in column 8. The first comprehensive
examination of mutually exclusive CHs of humans was
performed by [16]. The authors called these mutually ex-
clusive haplotypes Yin and Yang, and we will follow their
nomenclature here. We made a threshold of 47 or more
differences among 50 polymorphic sites (> = 94% differ-
ences) to name a pair of CHs as Yin and Yang. This
threshold was chosen to allow a few sequencing errors
and/or occasional “jumping” of a particular GV from
one haplotype into another, which occasionally happens
in accordance to the Biased Gene Conversion (BGC)

theory [25]. The example of Yin/Yang CHs are group 1
and 2 in Fig. 1C and Yin/Yang strings in Fig. 3. All in all,
56% of all segments (or 59% of segments that have two
or more CHs) have Yin-Yang pairs of CHs. Since the
abundance of Yin and Yang haplotypes was a big sur-
prise to us as well as to Zhang and co-authors [16], we
examined this phenomenon in detail.

Characterization of Yin, Yang, and Mosaic CHs
The highest occurrence of Yin and Yang CHs was de-
tected by Zhang and coauthors (2003) when they consid-
ered haplotypes built from high-frequency GVs (MAF
>20%). It dropped to about half when they reduced the
MAF threshold to 5%. We also observed that MAF
threshold influences the abundance of Yin/Yang pairs
for our dataset (see Table 2). In the computations of Yin
and Yang CHs by a pipeline of Perl programs, our algo-
rithm assigns “Yin” to the CH with the highest occur-
rence, and “Yang” to its less frequent mutually exclusive
counterpart. In addition to Yin and Yang, we also fre-
quently observed CHs that could be reconstructed from
many small pieces of Yin and Yang haplotypes (“zeros/
ones” strings), as illustrated in Fig. 3. Every haplotype

Fig. 1 Haplotype construction and characterization. a Example of two parental haplotypes from segment 12 on chromosome 4 of CEU_NA07357
individual from 1000 Genomes. Following the 1000 Genomes Project, “0” means the presence of a reference allele, while “1” means an alternative
allele in the haplotype. Only frequent GVs (with minor allele frequency >25%) have been used to construct haplotypes. In the last “Ancestral” line,
“R” means that the reference allele is ancestral, “M” means that alternative (mutant) allele is ancestral, and “X” means unknown ancestral/derived
status for the GV in the 1000 Genomes dataset. Information about every GV (identifier, location, alleles) and every haplotype are available from
the Additional file 1: SD1. b Chromosomes have been divided into segments of equal length (500 Kb). From the beginning of each segment, 50
adjacent high-frequency GVs have been selected for construction of the haplotypes. When less than 50 frequent GVs were present inside the
segment, this segment was elongated until a full-length haplotype with 50 GVs was complete (see Seg 4). c All haplotypes within a segment from
1092 individuals were grouped and ranked by the number of occurrences. Haplotypes that had been counted 100 or more times were named as
common haplotypes (CHs). On 1b three common haplotypes exist and are shown above the solid line
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Table 1 Distribution of Common Haplotypes in the Human Genome

CHR Segment Starting
Position

Haplotype
Length (KB)

Total SNPs in
Haplotype

# Common
Haplotypes

Occurrence of Common
Haplotypes

Max Diff Common
haplotypes

# Yin -
Yang

CHR_1 1 30923 771 1382 1 166 NA 0

CHR_1 2 808223 44 649 1 348 NA 0

CHR_1 3 1302106 19 298 3 1847 47 2

CHR_1 4 1806647 53 719 4 1499 48 2

CHR_1 5 2302471 49 780 4 702 47 2

CHR_1 6 2802348 36 743 6 1308 43 0

CHR_1 7 3302745 24 439 5 1419 46 0

CHR_1 8 3803755 202 1022 1 121 NA 0

CHR_1 9 4302585 51 874 5 1595 49 2

CHR_1 10 4802513 28 511 6 1478 47 2

CHR_1 11 5302118 6 145 4 1692 46 0

CHR_1 12 5802376 79 1344 4 897 30 0

CHR_1 13 6302510 60 785 3 1278 49 2

CHR_1 14 6802171 24 332 4 1731 48 2

CHR_1 15 7302754 22 385 4 1492 43 0

CHR_1 16 7803891 52 731 7 1286 48 2

CHR_1 17 8304607 47 784 4 1411 49 4

CHR_1 18 8808185 119 1394 5 1592 47 2

CHR_1 19 9302942 34 664 5 1252 40 0

CHR_1 20 9814964 173 2423 3 703 10 0

This table presents segment-wise distribution of Common Haplotypes along the whole human genome. Common Haplotypes are defined as those which occur at
least 100 times or more in the 1092 individuals. Segment length is the distance between the coordinates of the first and 50th SNPs with frequency > =0.25.
Starting position of each segment has been provided and segment length has been shown in kb. Haplotype pairs which differ in 47 or more loci (out of 50) have
been defined as Yin-Yang haplotypes

Fig. 2 Properties of haplotypes of frequent GVs in the human genome. “Occurrences” on the vertical axis represents the number of segments
that have specific characteristic shown on the horizontal axis. a Distribution of haplotype length (kb) in segments. b Distribution of total number
of GVs per haplotype. Horizontal axis shown in multiplication by 100. c Density of all GVs in a haplotype. d Number of CH groups per segment. e
Counts of all CHs in 1092 individuals in a segment. f Maximum allele differences between all CH groups within a segment
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can be reconstructed from fragments of perfectly exclu-
sive Yin and Yang strings, since they contain all possible
allelic variants. When a reconstruction is achieved using
only two or three large pieces, it can be explained by
one or two recombination sites between Yin and Yang
respectively. However, we frequently observed situations
when reconstruction could only be achieved by combin-
ing 10–30 small pieces. We named these CHs, which
can only be reconstructed from ≥12 pieces, Mosaic hap-
lotypes. The origin of such Mosaic haplotypes is exam-
ined below. Our Perl program, CountMosaics.pl counts
the minimal number of Yin and Yang “pieces” required
to build a Mosaic haplotype. The characteristics of Yin,
Yang, Mosaic, and all other CHs are present in the
Additional file 4: Table ST2. Their parameters include
numbers of ancestral and derived alleles in haplotypes
and numbers of Yin-Yang “pieces” required for recon-
struction of non-Yin/Yang CHs. An important conse-
quence of this Additional file 4: Table ST2 is that the
fraction of derived alleles in Mosaic haplotypes (average
31% of derived alleles) is considerably less than in Yin
and Yang (averages of derived alleles 55% and 43% re-
spectively). Moreover, the more “pieces” involved in the
construction of Mosaic segments, the less derived alleles
they have. For example, when we increased the threshold
for Mosaic haplotypes to ≥20 pieces, the percentage of
derived alleles in them was reduced to 24%. In addition,
in most of the cases, the derived alleles of a Mosaic
haplotype predominantly matched only one Yin or Yang
haplotype from this mutually exclusive pair. For ex-
ample, in the Fig. 3 ten out of twelve derived alleles of

this Mosaic haplotype are found in Yin and only two de-
rived alleles from this Mosaic haplotype are found in the
Yang haplotype. Computations of all segments with Yin,
Yang, and Mosaic CHs demonstrated that 59% of seg-
ments have a majority (80%) of Mosaic derived alleles be-
longing to one of the CH from Yin/Yang pair (see Fig. 4).
There is no statistical preference between Yin or Yang for
the derived alleles of Mosaic to be matched to. All these
observations may have a simple explanation if we assume
that a Mosaic haplotype is an ancestral stage for the evolu-
tion of one of the Yin or Yang haplotypes. The alternative
hypothesis that Mosaic is a product of multiple recombin-
ation events between Yin and Yang is not in line with
these observations, because in this case one would expect
to see a unimodal distribution of derived Mosaic alleles
among Yin and Yang haplotypes (which should be close to
“Expected” distribution in the Fig. 4).

Continental distribution of Yin, Yang, and Mosaic
haplotypes
Distribution of Yin, Yang, and Mosaic haplotypes among
continents has been examined and the results are shown

Fig. 3 An example of Yin, Yang, and Mosaic haplotypes and a Denisovan diplotype from the segment 102 of chromosome 1. The alleles that
match the human reference genome are shown as “0”, while the alternative alleles as “1”. The ancestral alleles are shown in black, and the
derived ones are shown in red. Blue and yellow highlights demonstrate pieces of Yin (blue) and Yang (yellow) segments from which the Mosaic
haplotype can be reconstructed. This Mosaic haplotype is constructed from 14 pieces and has 12 derived alleles. Ten Mosaic derived alleles (83%)
match the Yin haplotype and only two Mosaic derived alleles match the Yang haplotype. The Denisovan diplotype is shown in the last row. For
the diplotype “0” means that both parental alleles match the human reference genome, “2” means that both alleles match alternative alleles, “1”
means that this ancestral Denisovan person is heterozygous at this particular allele, and “x” means that this allele is unresolved. The heterozygous
status for our frequent GVs (MAF > 25%) is very rare for the Denisovan sequenced individual, so his homozygous diplotypes can be converted to
haplotypes by the substitution of “2”s for “1”s

Table 2 Abundance of segments with Yin, Yang and Mosaic
CHs

MAF
threshold

Total
#Seg

#Seg with ≥2
CHs

#Seg with
Yin/Yang

%Segs with
Yin/Yang

# Seg with
Mosaic CHs

>0.1 5425 5259 491 9 228

>0.2 5408 5174 2125 39 1278

>0.25 5398 5097 3024 56 1720

>0.3 5380 4946 3622 67 1574

Fig. 4 The observed data show 59% of cases where derived mosaic
alleles primarily (> = 80%) came from either Yin or Yang. On the other
hand, the expected dataset shows a normal distribution of Yin and Yang.
The expected dataset was computationally created by randomly assigning
each derived mosaic allele to Yin or Yang. In the observed data, 54.6% of
mosaic derived alleles came from Yin, while 43.8% of mosaic derived alleles
came from Yang. These percentages were used for the random
assignment of derived mosaic alleles in the expected dataset
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in Fig. 5. In our computations we name the most abun-
dant haplotype as Yin and the least abundant as Yang.
Fig. 5 displays that Yin haplotypes have statistically sig-
nificant avoidance (p < 4*10−6, chi-squared test) of the
African continent. Yang haplotypes as well have the
same trend of minimal occurrence in Africa, though this
is not statistically significant (p = 0.27). Both Yin and
Yang are nearly equally abundant in Europe and Asia. At
the same time, Mosaic haplotypes are slightly more
abundant in Africa than in Europe and Asia. This non-
random occurrence among continents strengthens the
possibility that Yin and Yang may correspond to two an-
cestral lineages, as one out of two alternative hypotheses
Zhang and co-authors initially suggested [16]. In an
attempt to reconstruct these human ancestral lineages,
we used Machine Learning approaches such as K-means
Clustering and Decision Tree Classifiers to characterize
the clusters that may correspond to these hypothetical line-
ages. Weka [26] and Rapid Miner [27] web computational

resources were used for this purpose. Five normalized pa-
rameters for Yin and Yang haplotypes for each segment
(total haplotype occurrence; the number of derived alleles;
percentage of haplotype occurrence in Africa, Asia, and
Europe) have been studied. However, despite our repeated
attempts, we were unable to obtain any significantly well-
separated clusters for these mutually exclusive haplotypes.
These results are not shown here; details are provided in
the Additional file 5: SD2.

Comparison of Yin, Yang, and Mosaic with ancestral
haplotypes
To evaluate the separation time of Yin, Yang, and Mosaic
haplotypes we compared them with the available archaic
human genome of one of the Neanderthal lineages
(“pinky” Denisovan, [23]) whose DNA has been perfectly
characterized (>30x coverage combined with high-quality
reads in “bam” file). Alleles of frequent GVs that comprise
our studied Yin, Yang, and Mosaic haplotypes of modern

Fig. 5 a Predominant occurrence of the Common Haplotypes (Yin, Yang, and Mosaic) among the African, Asian, and European populations.
Occurrences of Yin, Yang, and Mosaic haplotypes were computed on each continent and then normalized (see M & M) to account for the
uneven population sizes from the different continents. Predominance was determined by the highest normalized occurrence of the respective
common haplotype in a segment. b and c Abundance of ancestral haplotypes in the continents. Rare, uncommon, and common haplotypes
were determined by the number of matches to the ancestral haplotype out of 1092 individuals in a segment. Rare was classified as an ancestral
haplotype, with only 1–3 matches in the segment, Uncommon was classified as 4–100 matches, and common was >100 matches. b For
continent specificity, uncommon and rare haplotypes were defined as continent-specific if >90% of matches were found in a specific continent.
Rare haplotypes were defined as continent-specific if 100% of matches were found in a specific continent. Multi-Continent means there was no
continent specificity and matches to the ancestral haplotype were found on two or more continents. c Figure B represents the continents where
ancestral haplotypes are absent (shows less than 1% match) for all the three types of haplotypes i.e. Rare, Uncommon, and Common haplotypes
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humans have been evaluated in the Denisovan genome se-
quence. Using these alleles, the Denisovan diplotypes have
been assembled (parental haplotypes are not phased for
this ancestral genome, so the diplotype is the only option).
An example of this diplotype is shown in Fig. 3. In total,
we computationally processed 1720 chromosomal seg-
ments that contained Yin, Yang, and Mosaic haplotypes
and added to their files corresponding Denisovan diplo-
types. This information on Denisovan diplotypes is avail-
able from our Additional file 1: SD1. It appears that the
analyzed frequent GVs in the Denisovan genome were
predominantly homozygous (>99%). This phenomenon
simplified the comparison of the ancestral diplotypes with
modern haplotypes, because in a vast majority of cases a
diplotype is the summation of two identical copies of
homozygous haplotypes (see Fig. 3). The computation of
1720 segments demonstrated that, on average, Denisovan
haplotypes have the least number of derived alleles
(18.0%), while Mosaic counterparts have 31% derived al-
leles, Yin – 55% and Yang 43%. Denisovan haplotypes are
nearly identical (<=2 differences) to Mosaic haplotypes in
14% of analyzed segments (240 cases), whereas, such simi-
larities with Yin and Yang haplotypes were found in 1.4%
(25 cases) and 4.1% (71 cases) segments accordingly. Aver-
age allele difference between Denisovan haplotype and hu-
man CHs was also found to be least for the Mosaic
haplotypes (12 differences on average), followed by Yang
(19 differences on average) and Yin (25 differences on
average). All these data indicate that the Denisovan haplo-
types are most closely related to Mosaic haplotypes. Since
the Denisovan haplotypes contain considerably fewer de-
rived alleles than Mosaics (on average 18% versus 31% of
derived alleles respectively), the Neanderthal people must
have separated from modern humans earlier than the for-
mation time of Mosaic haplotypes.

Distribution of ancestral haplotypes among modern
humans
Since the Denisovan haplotypes contain only 18% of de-
rived alleles and 82% of ancestral ones, we were in-
trigued whether some modern humans still have
completely “ancestral” haplotypes built exclusively from
ancestral alleles of frequent GVs. To answer this ques-
tion, a 100% ancestral haplotype of the same 50 GVs for
each of 5398 segments have been deduced and com-
pared with all available haplotypes of 1092 people. We
allowed only one or two differences between the real
haplotypes and the deduced 100% ancestral one to name
them “ancestral”. Within 867 out of 5398 segments, an-
cestral haplotypes were found among modern humans.
Within 182 segments we counted less than 4 ancestral
haplotypes among all individuals (rare ancestral
haplotypes on Fig. 5b); in 497 segments we counted
from 4 to 99 ancestral haplotypes (uncommon ancestral

haplotypes on Fig. 5b); and in 188 segments ancestral
haplotypes were common (≥100 occurrences among
1092 people). The abundance of these ancestral haplo-
types among continents have been computed and
presented on Fig. 5.
Fig. 5 reveals that ancestral haplotypes are most abun-

dant in Africa. For 188 segments where ancestral haplo-
types are also the common ones (occurred ≥100 times) a
majority of them, 184 segments, were observed on all
continents and only four predominantly in Africa. How-
ever, these 184 “mixed” ancestral haplotypes still have
the highest representation in Africa (42%), then in
America (21%), Europe (20%), and Asia (17%).

Modeling the appearance and abundance of CHs using
GEMA computer simulations
Zhang and coauthors (2003) proposed that Yin-Yang hap-
lotypes could arise due to the admixture of two ancient
lineages of hominoids well before “Out-of-Africa” exodus
or, alternatively, spontaneously from the sole ancestral
population. The authors supported the latter hypothesis
with computer simulations. However, Zhang et al. used
simple simulations that did not take into account parame-
ters that notably influence SNP dynamics and linkage.
Therefore, to understand the origin of numerous mutually
exclusive CHs we performed advanced computer simula-
tions using our GEMA computational resource [20, 21].
The GEMA program generates a population of virtual in-
dividuals, creates an influx of novel mutations in their ge-
nomes and starts multiple cycles of individuals’ mating,
offspring creations followed by their selection for surviv-
ing into the next generation. GEMA simulates dynamics
of mutations under conditions close to natural. In these
computations, we explored how the following parameters
influence the formation of CHs and Yin/Yang pairs: 1)
population size [N individuals per generation were chan-
ged in different simulations in the following range: 124,
250, 500, 1000, and 2000]; 2) number of meiotic recom-
bination events per gamete (r) [r was either 48 events
(average for humans) or 24, 12, and 6 recombinations]; 3)
selection pressure [α parameter – number of offspring per
individual, which we changed from 2 (no selection) up to
10, which was the strongest in our experiments]. Other
parameters were invariant and we used their default
values: 1) flow of novel mutations per gamete [μ = 20,
which was close to the natural rate of 20–50 novel muta-
tions in human gametes]. 2) Mating schemes: random per-
manent pairs. 3) Co-dominant effect for ancestral/derived
alleles (dominance coefficient: h = 0.5). 4) Distribution of
mutation effects was Experiment-C (81% slightly deleteri-
ous; 9% beneficial; 10% neutral mutations). The results of
our computer simulations are summarized in the Table 3.
In the GEMA simulations we first assessed the distri-

bution of derived alleles by their frequency. A typical
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picture of such distribution is shown in Fig. 6. The high-
est abundance was always observed for very rare derived
alleles and the lowest abundance for nearly-fixed derived
alleles. The curve in Fig. 6 has the same shape as the real
distribution of SNPs occurrence documented for the
1000 Genomes Project (see Extended Data Fig. 3 in

[28]). In GEMA simulations and also in reality, the in-
flux of novel mutations per generation is in direct pro-
portion to the size of population N and equals 2Nμ (blue
arrow in Fig. 6). For the constant size population, ap-
proximately 50% of novel mutations transiently exist in a
single copy per generation (singletons) and are removed
in the next generation or in a few generations after their
arrival (bottom red arrow in Fig. 6). Also, a considerable
fraction of novel mutations exists in a few copies and
still will drift away after several generations. Only a very
minor fraction of derived mutations will survive and be
fixed. The rate of fixed mutations per generation is k =
2 μ according to the Kimura’s law, which does not de-
pend on the size of the population N [29]. [In several
textbooks μ is the number of novel mutations per person
and so k = μ.] Therefore, the number of frequent SNPs
(MAF >25%) will be between these two extremes (2Nμ
and 2 μ) and will grow with the increasing size of the
population, approximately as square root of population
size, N1/2 according to GEMA simulations (see Fig. 7a).
In 1092 sequenced human genomes the number of fre-
quent GVs (MAF >25%) is considerable and equals
2,944,337. Our simulation experiments with the parame-
ters approximated to nature (α =5; r = 48, μ = 20) dem-
onstrated that such high number of frequent SNPs in a
sole population is achieved when N is about 25 million
(see Table 3 and Fig. 7). In these computations we used
the lowest estimations of novel mutations for human
gametes μ = 20. If we use the highest evaluation μ = 50,
then the size of the population for which number of fre-
quent SNPs is 2.9 million dropped to 10 million people.
Since all GEMA simulations gave equal chances for all
virtual individuals in mating schemes and the number of
offspring was the same for each virtual individual, the
size of the population should be equal to the effective
size N =Neff. In several independent estimations of Neff

for humans, this number is around 104, which is strik-
ingly lower than 107 [30–32]. These estimations of
effective population size are supported by a well-known
formula for genetic diversity (θ), which shows that θ =
4μNeff [33, 34]. The genetic diversity between European
and/or Asian individuals is around 4x106 [9]. Using μ =
100 for the number of novel SNPs per individual in the
formula above, the value of Neff becomes 104. Since
everybody agrees that population size of modern
humans is much higher than archaic humans, it is un-
likely that numerous frequent SNPs arrived from the
sole ancestral population, which effective size must be
around 10 million. An alternative scenario for the
creation of multiple frequent SNPs is the admixture of
subpopulations that were separated for hundreds of
thousands of years (see Discussion).
We examined the abundance of CHs and mutually ex-

clusive Yin-Yang pairs in the GEMA modeling under

Table 3 Dynamics and arrangement of SNPs in GEMA
simulations

Parameters R e s u l t s

N r α # SNP x 103 #Freq SNP % seg CHs % seg Y/Y

124 48 5 50 6070 85 6.9

250 48 2 270 42333 98 12.5

250 48 3 146 16092 82 4.6

250 48 5 103 9644 73 5.5

250 48 10 80 6682 65 4.9

250 24 5 93 7045 96 25.4

250 12 5 82 5255 99 49.2

250 6 5 73 3863 100 69.0

500 48 5 193 12754 49 3.0

500 48 10 160 9109 55 2.6

1000 48 5 407 17724 35 2.0

2000 48 5 802 24897 25 1.1

This table presents an overall summary of the investigated chromosomal
segments resulting from the analyses performed with different sets of SNPs
according to their minor allele frequency (MAF threshold, shown in column 1).
While column 2 shows total number of segments obtained in each experiment
(see M&M for illustration), columns 3, 4, and 6 presents the number of
segments with CHs, Yin/Yang haplotypes and Mosaic haplotypes respectively.
Column 5 gives the percentage of total segments having Yin/Yang haplotypes
Column four represents the total number of SNPs in the population of virtual
individuals. Column five demonstrates the number of frequent SNPs (MAF
>25%) in the same modeling population. Column six represents percentages
of segments that have one or more CHs (with frequency > =5% in the
modeling population), while last column – percentages of segments with
Yin/Yang CHs

Fig. 6 Distribution of derived SNPs in GEMA simulations. Parameters for
this computation were the following: M = 20; a = 2; N = 250; r = 48; h =
0.5. Blue dots represent number of derived SNPs in the range of 1%
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different conditions (Table 3). This table demonstrates
that selection pressure (α), population size (N), and mei-
otic recombination rate (r) considerably influence the
distribution of SNPs and formation of CHs in popula-
tions (see also Fig. 7). Many GEMA experiments demon-
strate that Yin-Yang CHs are 5–10 times less abundant
than in nature (compare Table 2 vs. Table 3). One of the
most important parameters that stimulate the creation
of abundant CHs and Yin/Yang pairs is the meiotic re-
combination rate (r), which should be low. On the other
hand, the increase of the population size (N) causes a
significant decrease of the abundance of CHs and the
Yin/Yang pairs (Fig. 7c and Table 3). Due to the limita-
tion of RAM in our Linux workstations, we were unable
to increase the size of populations above N = 2000 in our
computational modeling experiments. However if we ex-
trapolate the results of our trends in Fig. 7a and Table 3,
then for the N ≥ 1,000,000 there should be practically no
CHs or Yin/Yang pairs. Therefore, our computer simula-
tions demonstrate that the observation in modern
humans of a high number of frequent SNPs (2.9x106),
together with an abundance of CHs (85% segments) and
Yin/Yang pairs (56% of segments), could not originate
from a single homogeneous population.

Discussion
Humans possess 2,944,337 frequent GVs (MAF > 25%).
This number is strikingly large. In order to get so many
frequent GVs inside an isolated single population, its ef-
fective size should be around ten million, as demon-
strated by GEMA modeling (see Fig. 7 and explanations
in the Results). We also demonstrated that in modeling
populations with large sizes, the arrival of mutually ex-
clusive Yin/Yang CHs are very rare events. Since 56% of
the investigated 5398 human loci have Yin/Yang CHs,
special incidents must have happened during recent evo-
lution to create these numerous mutually exclusive CHs.
A straightforward possibility for the appearance of
numerous Yin/Yang patterns is an admixture of two

long-separated populations, which would also explain
the observed large number of frequent GVs.
Let’s consider this hypothetical admixture and its con-

sequences. According to Kimura’s law, a population has
k = 2 μ fixed mutations per generation, which does not
depend on the population size [29]. In humans, the
value of k is around 100. In order to fix a million muta-
tions, 10,000 generations are required, which roughly
equals to 250,000 years (we assume 25 years per gener-
ation). Thus, after the admixture of two populations of
comparable sizes that were separated from each other by
250,000 years, all mutations that had been fixed during
their separation should become frequent GVs. So, this
proposed admixture should automatically convert two
million recently fixed mutations in both populations into
frequent GVs, which, in addition, should be arranged as
Yin/Yang CHs descended from two ancestral popula-
tions. (The actual number of frequent SNPs may be a lit-
tle bit less if we assume that a fraction of the mutations
that has been fixed are same in both populations.) These
estimations demonstrate that the observed number and
arrangement of 2.9x106 frequent GVs in humans may
have been created by a single “Great Admixture” of two
major lineages that had been separated from each other
around 400 thousand years. However, Yin/Yang pairs
were observed only in 56% of the segments. In the rest
segments one of the Yin or Yang might be lost due to se-
lection (if one of them is more beneficial than the other).
This process of CH loss reduces the number of frequent
GVs, so the separation time of two ancestral populations
might be up to 800 thousand years to allow creation of
about 3 million frequent GVs after their admixture.
Modern humans are widely spread across the globe and

adapted to a number of diverse environments on different
continents. In general, an admixture of different groups of
people from different places should be beneficial overall
and allow new combinations of various adaptations. For ex-
ample, a Neanderthal EPAS1 allele is widespread in
Tibetans and helps living in high altitudes [35]. Other bene-
ficial examples were recently reviewed by Haber and co-

Fig. 7 Dependence of SNP number and CH occurrence on the population size (N) in GEMA experiments. a Frequent SNPs with MAF > 25% are
shown as blue stars. Red triangles show a square-root curve c(N)0.5, where c is a constant that approximates the GEMA modeling data (c = 557). b
Number of all SNPs (rare and frequent) in the modeling populations. c Percentage of segments that contain one or more CHs (blue line) and Yin/
Yang pairs of CHs (red line)
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authors [36]. There were multiple well-known admixtures
in recent human history, including peopling of New World
by Europeans and Africans. Several admixtures of long-
separated archaic human lineages are also described in the
literature [36–38]. They include an admixture occurred be-
tween Neanderthal people and archaic humans [36, 38].
Importantly, this latter event did not create Yin/Yang CHs,
since the number of Neanderthals at the admixture was
negligible compared to archaic humans and, thus, Neander-
thals’ recently fixed mutations were predominantly con-
verted into rare GVs in modern humans. Recently David
Curtis described and example of human Yin/Yang rare
haplotype pair built from rare missense SNPs [18]. One of
his plausible explanations of the origin of this locus was an
admixture. For the conjectured “Great Admixture” of two
ancestral populations named A and B, their sizes should
differ from each other by no more than three times in order
to generate Yin/Yang CHs. Because Yin CHs have strong
avoidance of Africa, (see Fig. 5) it is reasonable to surmise
that one of the A or B ancestral lineages should have
evolved outside this continent and was a distant relative to
the Neanderthals. At the same time, the prevalence of an-
cestral and Mosaic haplotypes in Africa supports the possi-
bility that another ancestral lineage had likely developed
inside this continent. In our hypothetical scenario, A and B
ancestral lineages are the primary sources for Yin/Yang
CHs. The observed Mosaic CHs may be interpreted as fa-
vorable combinations of mutations in one of the ancestral
A or B populations that have been beneficial to people and,
hence, have been preserved for hundreds of thousands of
years in the ancestral populations.
Is it possible to estimate the time of the hypothetical

“Great Admixture” event? The Denisovan CHs give us a
good reference point, which helps the assessment. The
analyzed Denisovan CHs possess 18% of derived fre-
quent alleles present in modern humans, while Yin/Yang
pairs share on average 1% of derived alleles. Therefore,
separation of two ancestral lineages A and B must have
occurred prior to the separation of archaic humans with
Neanderthals. At first approximation we assume that on
average modern humans may have about 50% of derived
alleles for frequent SNPs. The abundance of these de-
rived alleles should be lower in the ancestral genomes.
In our estimation, we assume a linear decline of the per-
centage of these derived alleles in time backwards.
Taking the separation time of Neanderthals with modern
humans to be about 0.7 MYA [between 0.8–0.55 Mya
according to several independent assessments [23, 38]
and also based on our finding of 18% of derived alleles
for frequent GVs in the Denisovan genome, we esti-
mated that the time of separation of A and B lineages
should be 1.5 times older than the separation of Nean-
derthals and modern humans. Similarly, considering the
fact that Mosaic haplotypes have on average 31% of

derived alleles for frequent GVs, we estimated that the
time period of Mosaic haplotypes’ formation was around
0.4 Mya. Our hypothetical scheme of the origin of mod-
ern humans from the Great Admixture event is illus-
trated in the Fig. 8. We conjecture that the “Great
Admixture” occurred roughly 300–100 thousand years
ago (0.2 MYA on average in the Fig. 8). In this illustra-
tion we draw the Neanderthal branches and the
branches of modern African, Asian, and European popu-
lations based on Kuhlwilm and co-authors paper [39].

Conclusions
Our results support the multi-regional theory of creation
of modern people with multiple local admixtures with
one “Great Admixture” event that generated a majority
of frequent GVs and abundance of Yin/Yang CHs.
Dynamics and arrangement of GVs in modern humans

represent very intricate patterns. Multiple parameters

Fig. 8 Scheme of the hypothetical Great Admixture event that led
to formation of modern humans. Around 1 MYA two archaic
lineages a and b separated from each other. These two lineages a
and b are represented by the yellow and blue arms respectively. The
gradient color scheme in these two arms shows appearance and
gradual accumulation of novel GVs in each of the two lineages. The
grey branches at 0.7 MYA time point shows the Neanderthal
separation. WN, EN and D represents western Neanderthal, eastern
Neanderthal and Denisovan respectively. The “Great Admixture” is
represented by the appearance of the green color around the 0.2
MYA time point (right after the yellow and blue arms join each other).
The modern populations are represented by the three descending
branches following the “Great Admixture” event. AF, AS, and EU
denotes African, Asian and European populations respectively
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including selection pressure, meiotic recombination rates,
and size of the population are very important in the ana-
lysis of these patterns. Advanced computer simulations,
like GEMA, are extremely helpful in understanding SNP
abundance and arrangement at the genomic scale.

Additional files

Additional file 1: SD1. Complete set of our pipeline of Perl programs
to characterize human haplotypes and Denisovan diplotypes is presented
in this file. All the output files which contain information about every GV
with MAF >0.25 (identifier, location, alleles) and every haplotype in the
human genome and every diplotype in the Denisovan genome are also
available in this file. The file is archived and compressed using UNIX gzip and
tar commands. The size of this file is 2.8 GB and it is available from our web-
page: (http://bpg.utoledo.edu/~afedorov/lab/YinYang.html). (GZ 2.63 gb)

Additional file 2: Instruction Manual. Instruction manual and
protocols for Perl programs for construction and analysis of haplotypes of
frequent genetic variants and protocol for GEMA modelling. The file
name is InstructionManualYinYang.docx in our website. (DOCX 685 kb)

Additional file 3: Table ST1. Distribution of CHs has been examined
among all human autosomes in 5398 segments, and these data are
shown in the Additional file 2: Table ST1. (XLSX 643 kb)

Additional file 4: Complete table presenting the characteristics of Yin,
Yang, Mosaic, and all other CHs in all the 22 human autosomes.
(XLSX 1667 kb)

Additional file 5: SD2. The results of Machine Learning approaches
(Weka, (26) and Rapid Miner, (27) web computational resources) are
presented here. (DOCX 238 kb)

Additional file 6: Table S2. A prototype of one of the output files
generated in Step II. The name of the file is CORE_HAPS_New_140 which
is for chromosome 1 segment 140. The file is transferred from UNIX to pc
environment in MS Excel format. (XLSX 23 kb)

Additional file 7: Table S3. A prototype of one of the output files
generated in Step II. The name of the file is STAT_FOR_Yin_Yang_New_1
which is for chromosome 1. The file is transferred from UNIX to pc
environment in MS Excel format. (XLSX 50 kb)

Additional file 8: Table S4. A prototype of one of the output files
generated in Step II. The name of the file is STAT_FOR_Mos_New_1
which is for chromosome 1. The file is transferred from UNIX to pc
environment in MS Excel format. (XLSX 98 kb)

Additional file 9: Table S5. A prototype of one of the output files
generated in Step II. The name of the file is Combined_STATS_YY_Mos_1
which is the output file for chromosome 1. The file is transferred from
UNIX to pc environment in MS Excel format. (XLSX 140 kb)

Additional file 10: Table S6. A prototype of one of the output files
generated in Step V. The name of the file is
CORE_HAPS_with_DENI_Pinky_10 which is the output file for
chromosome 1 segment 10. The file is transferred from UNIX to pc
environment in MS Excel format. (XLSX 21 kb)
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