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Abstract 

Thousands of prolonged sequences of human ultra-conserved non-coding elements (UCNEs) share only one common feature: peculiarities in 
the unique composition of their dinucleotides. Here we investigate whether the numerous weak signals emanating from these dinucleotide 
arrangements can be used for computational identification of UCNEs within the human genome. For this purpose, we analyzed 4272 UCNE 

sequences, encompassing 1 393 448 nucleotides, alongside equally sized control samples of randomly selected human genomic sequences. 
Our research identified nine diff erent f eatures of dinucleotide arrangements that enable differentiation of UCNEs from the rest of the genome. 
We emplo y ed these nine features, implementing three Machine Learning techniques – Support Vector Machine, Random Forest, and Artificial 
Neural Networks – to classify UCNEs, achieving an accuracy rate of 82–84%, with specific conditions allowing for over 90% accuracy . Notably , 
the strongest feature f or UCNE identification w as the frequency ratio between GpC dinucleotides and the sum of GpG and CpC dinucleotides. 
A dditionally, w e in v estigated the entire pool of 31 046 SNPs located within UCNEs f or their represent ation in the ClinVar dat abase, which 
catalogs human SNPs with known phenotypic effects. The presence of UCNE-associated SNPs in ClinVar aligns with the expectation of a 
random distribution, emphasizing the enigmatic nature of UCNE phenotypic manifestation. 
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ltra-conserved non-coding elements (UCNEs or UCEs) are
idespread in the genomes of all mammals and other ver-

ebrates. Discovered between 2002 and 2004, they captured
he immediate attention of the scientific community ( 1 ,2 ). Yet,
he mystery of why these long non-coding DNA fragments
ave remained unchanged for hundreds of millions of years
ersists. Theodosius Dobzhansky’s famous assertion, ‘Noth-

ng makes sense in Biology except in the light of Evolution’
 3 ), appears to be paradoxically inapplicable to UCNEs; their
iological functions continue to elude us. Several population
tudies suggest that UCNEs should be under strong selection
ressure ( 4–7 ). This selection pressure contradicts the obser-
ation that the vast majority of mutations inside UCNE se-
uences do not show any phenotypic effects ( 5 ,8 ) (see also
ur results in this paper). There are several hypotheses about
he possible functional roles of UCNEs, including their pres-
nce in non-coding RNAs ( 9 ,10 ) and how they may act as en-
ancers that regulate gene transcription ( 11 ). However, less
han 20% of UCNE sequences are present inside the en-
ire pool of non-coding RNAs (ncRNAs), and the intersec-
ion between datasets of UCNE and ncRNA sequences re-
ains at the level of random occurrence ( 12 ). In a recent re-

iew, Snetkova et al. ( 11 ) thoroughly examined UCNE’s po-
ential enhancer roles. The authors emphasized the inexplica-
ility of uninterrupted sequence conservation in two hundred
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nucleotide-long UCNEs. They concluded that ‘ultraconserva-
tion is likely to be maintained by multiple forces’. In addi-
tion, McCole and co-authors suggested that ultraconserved el-
ements may occupy specific arenas of 3D mammalian genome
organization ( 13 ). 

There are several definitions of UCNE sequences, and their
count depends on a particular set of rules for their characteri-
zation. Our research uses the UCNEbase database, which clas-
sifies a DNA fragment as a UCNE if it is at least 200 bp long
and shares 95% identity between humans and chickens ( 14 ).
This database contains 4272 elements, with an average UCNE
size of about 300 nucleotides. An alternative definition of UC-
NEs requires sequences to exceed 100 nucleotides with com-
plete identity across several mammals ( 15 ). All in all, UCNEs
are widespread throughout all chromosomes and are most
frequently located inside intergenic regions or within large
introns. Remarkably, UCNEs share no nucleotide sequence
similarity with each other and lack significant enrichment of
any oligonucleotides ( ≥10 bases long) that may serve as com-
mon functional motifs for enhancers or other DNA regulatory
elements ( 12 ). 

Recently, our team demonstrated that the only common
nucleotide similarity across UCNE sequences is their unique
dinucleotide composition ( 12 ,16 ). In general, UCNEs are
GC-poor nucleotide sequences that are strongly enriched
with GpC dinucleotides and deficient in GpG and CpC
024. Accepted: June 19, 2024 
enomics and Bioinformatics. 
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dinucleotides. Because dinucleotides (also frequently referred
to as ‘nearest neighbor doublets’ ( 17 )) are the most critical el-
ements for different DNA conformations, we are convinced
that the key to the cryptic properties of UCNEs is hidden in
their specific DNA conformations. In this paper, we examine
the prediction power of dinucleotide arrangements for com-
putational differentiation of UCNEs from whole genome se-
quences. At the end, we propose our hypothesis that specific,
non-canonical DNA conformation of UCNEs may be integral
to the homologous pairing of double-stranded DNAs during
meiosis. 

Materials and methods 

Databases 

We used our purified set of 4272 UCNEs sequences described
and available from Fedorova et al . ( 12 ). This set was created
from the human UCNEbase database ( 14 ) ( https://epd.expasy.
org/ ucnebase/ ). Since no one has ever found any specific ori-
entation in UCNE sequences (where is the beginning vs. the
end of a UCNE?), we processed only the reference positive
strand of all UCNE sequences. For distances between din-
ucleotides, we used the measurement scheme from our pre-
vious paper by Fedorova et al. ( 16 ). The minimal distance
corresponds to the shortest distance between intersected din-
ucleotides. Intersected dinucleotides are pairs of nucleotides
that share one nucleotide. For instance, in the triplet ATG,
AT and TG are considered intersected dinucleotides. In this
example, the distance between AT and TG in ATG is L = 1
nucleotide. 

Human genome sequence with masked repetitive elements
(shown in lower case letters) was downloaded from https:
// hgdownload.soe.ucsc.edu/ downloads.html UCSC genome
browser as an assembly of the human genome (hg38, GRCh38
Genome Reference Consortium Human Reference 38, acces-
sion: GCA_000001405.15), accessed on 20 March 2024. This
whole genome was used to create randomly selected DNA
fragments (Whole Genome Elements, WGE) and unique (non-
repetitive) Whole Genome Elements (uWGE). Sequences of
WGEs and uWGEs were truncated to match the length of
the UCNE sequences, resulting in each WGE and uWGE sets
having the same sequence length distribution as the UCNE
database. 

ClinVar database has been downloaded from NCBI FTP
site ( https:// ftp.ncbi.nlm.nih.gov/ pub/ clinvar/ vcf _ GRCh37/ )
in the format VCFv4.1 (fileDate = 2024-01-27), last accessed
on 20 March 2024. 

Feature calculation for machine learning (ML) 

Features were calculated using a series of our Perl pro-
grams: make_features_F1_F2_F8.pl, make_feature_F3.pl,
make_features_F4_F5.pl, make_features_F6_F7.pl,
make_feature_F9.pl. 

The feature calculations for UCNE sequences and uWGE
sequences were combined into one table using the fea-
ture_input_table.pl program. 

All Perl programs are available on our website ( http://bpg.
utoledo.edu/ ~ afedorov/ lab / UCNE3.html, accessed on March
20, 2024), in a package that includes an Instruction Man-
ual (UCNE3instruction.docx). In addition, this package of
programs and instructions is available in the Supplementary 

File S1 . 
Feature #1 (F1) and Feature #2 (F2) are related to frequen- 
cies of GpC, GpG and CpC dinucleotides (see Results section 

for further explanation). 
Feature #3 (F3) encompasses 17 dinucleotide pairs sep- 

arated by one or two nucleotides: T An(n)GA, T An(n)GC,
T An(n)GG, T An(n)GT, ACn(n)T A, CCn(n)T A, GCn(n)T A,
TCn(n)TA, AAn(n)GC, ATn(n)GC, GCn(n)TT, AGn(n) AT,
GGn(n)AT , AGn(n)GT , ACn(n)CT , ATn(n)CT , GCn(n)TC. See 
Results section for more details. 

Feature #4 (F4) is the combined frequency of GC-rich 

triplets. F4 includes eight triplets: GGG, CCC, GAG, CCT,
CCA, CTC, TGG, AGG 

Feature #5 (F5) is the combined frequency of AT-rich 

triplets. F5 includes four triplets: TT A, T AA, A TT, AA T. 
Feature #6 (F6) is the combined frequency of 17 adjacent 

dinucleotide pairs that are enriched within UCNE sequences 
compared to uWGE sequences. F6 includes: AA TT, T ACA,
TT AC, GT AA, TT A T, A T AA, AA TG, CA TT, A TT A, T AA T,
TCA T, A TGA, TT AA, TC AA, TTGA, C AA T, A TTG. 

Feature #7 (F7) is the combined frequency of 18 dinu- 
cleotide pairs that are separated by one nucleotide ( e.g. AC- 
nGC) that are enriched within UCNE sequences compared 

to uWGE sequences. F7 includes: ACnGC, GCnGT, ACnGT,
AAnAG, CTnTT, TGnCA, CTnAT, A TnAG, CAnT A, T AnTG,
TTnA T, A TnAA, TTnTC, GAnAA, T AnT A, GTnA T, A TnAC,
A TnA T. 

Feature #8 (F8) is the ratio of Purine / Pyrimidine 
(Pyrimidine / Purine) dinucleotides (TpG, CpA, GpT, ApC) to 

Purine / Purine (Pyrimidine / Pyrimidine) dinucleotides (ApG,
CpT, GpA, TpC). 

Feature #9 (F9) represents GC-content of the sequences and 

is explained further in the Results section. 

Data preprocessing 

Before Machine Learning algorithms were employed, the data 
was pre-processed in R version 4.2.3 and Python version 

3.12.2. First the input data was randomly split into 70% 

training and 30% testing sets using the caTools R package 
( 18 ). Both training and testing data were normalized using the 
generic scale function in R. 

The data was preprocessed in the same manner using the 
SciKit Learn package and workflow in Python ( 19 ). 

Machine learning implementation 

Once the data was prepared, three ML algorithms were 
applied using our R code, ML_model.R and Python code 
ML_model.py . SVM model was trained and tested using the 
e1071 R package ( 20 ). The classifier was manually tuned for 
the best parameters. Our model used the radial kernel, 1.0 

cost and 0.155 gamma. The random forest model was trained 

and tested using the randomForest R package ( 21 ). Our model 
used all default parameters which produced 500 trees. Finally,
the neural network model was trained and tested using the 
nnet R package ( 22 ). Our network had 5 hidden layers, 0.1 de- 
cay, and a maximum number of weights at 1000. The Receiver 
operator characteristics (ROC) curves and the area under the 
curve (AUC) were computed using the pROC R package ( 23 ) 
and plotted using the ggplot2 package ( 24 ). 

To validate our results, we applied the three models with the 
same parameters using the built in functions provided by the 
SciKit Learn package in Python ( 19 ). All codes are available 
in the Supplementary File S1 . 

https://epd.expasy.org/ucnebase/
https://hgdownload.soe.ucsc.edu/downloads.html
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
http://bpg.utoledo.edu/~afedorov/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae074#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae074#supplementary-data
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Figure 1. Length distribution of UCNE sequences. Randomly generated WGE and uWGE sequences have the same length distribution. 
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tatistics 

n preprocessing, both the training and testing dataset is scaled
sing the generic scale function in R. The mean is subtracted
rom each element and divided by the standard deviation
o normalize the dataset. Once preprocessed and ML algo-
ithms were employed, each confusion matrix was extracted
nd evaluated using the Caret R package ( 25 ) ( Supplementary 
igure S1 ). From the confusion matrix we calculated the sensi-
ivity , specificity , 95% confidence interval, and total accuracy
or each model ( Supplementary Table S1 ). 

esults 

atasets 

ltra-conserved non-coding elements (UCNEs) vary in length,
ypically beginning at around 200 base pairs (bp) and infre-
uently extending up to 1000 bp. The distribution of U S NEs
y their length is shown in Figure 1 . For an accurate com-
arison of UCNEs with the rest of the genome, we created
wo types of datasets from randomly chosen human genome
ragments. The first dataset, named Whole-Genome Elements
WGEs), contains randomly chosen fragments with the same
ength distribution as the UCNE database. The second dataset,
amed unique Whole-Genome Elements (uWGE), consists of
nique genomic sequences, that lack DNA repetitive elements.
ach WGE and uWGE dataset was designed to match the
CNE dataset in both the number of sequences and their cu-
ulative length. 

eneration of features of UCNE and genomic 

equences for machine learning (ML) 

or every UCNE and control sequence from both WGE
nd uWGE, we calculated how frequently a particular din-
cleotide pattern appears. To get a frequency for this pat-
ern, we divided the total number of pattern occurrences
y the length of the DNA sequence it was found in. This
attern frequency, calculated for each nucleotide sequence
n our databases, serves as a ‘ feature’ or input variable for
ML algorithms. In total, we generated nine different features,
which are exemplified in Table 1 and described in more detail
below. 

Feature #1 and #2 

In our previous research, we found that UCNE sequences are
unique from the whole genome primarily due to the overabun-
dance of GpC dinucleotides and underabundance of CC and
GG dinucleotides Fedorova et al. ( 12 ). Interestingly, CpG din-
ucleotides within UCNE are underrepresented as expected for
randomly chosen fragments of the human genome and could
not serve as markers for ultraconserved DNA. Therefore, we
chose the frequency of GpC dinucleotide (F GpC 

) as Feature #1
(F1) and the combined frequency of CC + GG dinucleotides
(F CC+GG 

) as Feature #2 (F2). These are outlined in Table 1 . To
evaluate our features for their UCNE-prediction ability, we
plotted their frequency distributions within UCNE and con-
trol uWGE sequences, as demonstrated in Figure 2 . In this
figure, we used the ratio of F GpC 

/ (F CC+GG 

) because these fre-
quencies exhibit inverse patterns in the two datasets: F GpC 

is
overrepresented in the UCNE dataset, while (F CC 

+ GG 

) is un-
derrepresented. Figure 2 demonstrates distinct peaks for UC-
NEs versus uWGEs, indicating that the prediction ability of
UCNE using this ratio is 74% accurate. Initially we consid-
ered the F GpC 

/ (F CC+GG 

) ratio to be a single feature. However,
subsequent ML experiments showed that employing F GpC 

and
F CC+GG 

as separate features (F1 and F2) yielded marginally
better results for the Support Vector Machine (SVM) ML ap-
proach. Therefore, we used F GpC 

and F CC+GG 

as F1 and F2 in
our final experiments. We evaluated all generated features for
their UCNE prediction ability with the same simple approach
and incorporated a feature into our ML analysis if its predic-
tion power exceeded 67%. 

Feature #3 

One of the prominent patterns of dinucleotide arrangements
described in Fedorova et al. ( 16 ) is shown in Figure 3 . Seven-
teen different dinucleotide pairs have the same peak across

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae074#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae074#supplementary-data
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Table 1. Example of input data of nine features of UCNE and uWGE sequences for further ML analysis 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 Class 

WGunique-1 12 .86 17 .14 171 .43 68 .57 11 .79 5 4 .29 0 .37 52 .14 0 
WGunique-2 11 .07 9 .88 47 .83 41 .5 13 .04 4 .74 5 .53 0 .62 45 .06 0 
WGunique-3 17 .71 25 .14 116 .67 74 .57 0 .86 1 .43 4 .57 1 .17 64.29 0 
WGunique-4 3 .11 5 .36 70 .73 21 .28 55 .02 14 .53 10 .55 1 .03 28 .37 0 
WGunique-5 6 .42 7 .92 120 .69 29 .55 42 .4 11 .99 9 .64 0 .79 35 .55 0 
…
chr21_Griselda 13 .33 11 .9 105 .88 35 .71 45 .71 13 .81 12 .86 1 .1 43 .33 1 
chr21_Gwyneth 4 .63 2 .78 62 .5 12 .5 51 .39 15 .74 6 .94 2 .46 27 .31 1 
chr21_Hana 8 .7 9 .13 180 35 .22 27 .39 9 .57 9 .57 1 .22 40 .87 1 
chr21_Havana 15 .79 16 .54 100 53 .01 6 .77 1 .88 5 .64 0 .77 55 .64 1 
chr21_Hector 5 .31 8 .16 64 .29 29 .6 22 .2 7 .02 7 .59 1 .05 36 .05 1 

The first column represents identifiers for each sequence, the last column dataset type: 0 – uWGE, 1 – UCNE. The real table contains data on 4272 UCNEs 
and the same number of uWGE sequences. 

Figure 2. Distribution of number of UCNE and uWGE by the ratio ( R ) of their feature #1 to feature #2 values. This ratio was normalized for interpretation 
simplicity R = (2*F1 / F2) ×100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UCNE curves. This characteristic peak, which is absent in
whole genome and quasi-random curves, always exists at
the same distance and signifies a specific spatial arrangement
where two dinucleotides are separated by two nucleotides (re-
ferred to as a distance of L = 4 nucleotides in previous nomen-
clature). Since the occurrence of a particular dinucleotide pair
(for instance, TAnnGC as depicted in Figure 3 a, with n stand-
ing for any nucleotide) happens approximately once every 250
nucleotides, this infrequency renders the pattern insufficient to
serve as a standalone feature. To address this, we aggregated
the occurrence of all seventeen dinucleotide patterns, nine of
which are shown in Figure 3 , and calculated the total number
of their occurrences inside each UCNE and uWGE sequence
for two specified distances: L = 3 (e.g. TAnGC ) and L = 4 (e.g.
TAnnGC ). We then divided the total number of occurrences
of all patterns at L4 by the total number of all patterns at L3.
This ratio, defined as Feature #3 (F3) provides a comparative
metric: values greater than 1 are indicative of UCNEs, while
values less than are indicative of whole genome sequences. Ini-
tial assessments demonstrated that the prediction power for
F3 is 68%. 
Features #4-8 

We examined patterns for all 256 possible pairs of dinu- 
cleotides, which are presented in Supplementary File S2 . By 
analogy to the described feature F3, we grouped patterns ac- 
cording to their shape characteristics that distinguish UCNE 

from uWGE sequences and evaluated these groups for their 
prediction ability. Using this approach, we generated five more 
features (F4 through F8) for ML, as described in the Materi- 
als and Methods section. F4 and F5, in particular, quantify 
the frequency of GC-rich and AT-rich triplets (here, triplets 
are defined as two overlapping dinucleotides separated by 
one nucleotide at distance L = 1). Feature #6 (F6) is com- 
posed of 17 pairs of adjacent dinucleotides (L = 2), and Fea- 
ture #7 (F7) consists of a set of 18 dinucleotide pairs sep- 
arated by a single nucleotide (e.g. ACnGC where L = 3),
which appear significantly more often in UCNE sequences 
than in uWGE sequences. Lastly, Feature #8 (F8) is the ratio 

of dinucleotides composed of alternating purine and pyrimi- 
dine bases (TpG, CpA, GpT, ApC) to the dinucleotides com- 
posed of homopyrimidine or homopurine bases (ApG, CpT,
GpA, TpC). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae074#supplementary-data
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Figure 3. Distribution of spacing distances between pairs of particular dinucleotides for UCNE (red), uWGE (blue), random UCNE (yellow) and random 

uWGE (gray) as described in Fedorova et al. ( 16 ). The 99.7% confidence intervals ( ±3 σ) are demonstrated for UCNE datasets as vertical bars. Statistical 
errors for averaged uWGE, random uWGE, and random UCNE are 30 times less than standard deviation for UCNE and are invisible in these graphs. 
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Figure 4. Distribution of GC-content in UCNE and uWGE sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature #9 

In the study by Fedorova et al. ( 12 ), it was established
that the UCNE dataset is GC-poor compared to the whole
genome datasets (showing a GC content of 37% and 42%,
respectively). Building on this observation, we identified the
GC content as our ninth feature for ML. We calculated
the GC-content percentage for each examined nucleotide se-
quence. The distribution of GC-content for UCNE and uWGE
datasets is demonstrated in Figure 4 . While there is signifi-
cant overlap in the data, the distribution suggests a threshold
for classification: if a tested sequence has a GC-content above
46%, it is likely associated with WGE, whereas if the GC-
content is between 32% and 40%, there is a high probability
that it belongs to UCNE. 

Machine learning for UCNE classification 

We compiled all nine described features into a single dataset,
organized in a format compatible with the ML R-package,
illustrated in Table 1 . The dataset comprises 4272 pairs of
UCNE and WGE sequences, with the sequence class indicated
in the final column (1 for UCNE, 0 for WGE). We acknowl-
edge that different features have different scales in Table 1 ,
yet at the initial step of ML, they were normalized using a
standard R package to ensure consistency in our approach.
We always set ML in the following proportion: 70% of the
data allocated for training and 30% reserved for testing the
model’ s performance. W e employed three very popular ML
approaches—Support Vector Machine (SVM), Random For-
est (RF) and Artificial Neural Network (ANN)—to rigorously
test for classification of UCNE versus whole genome. Addi-
tionally, we used independent packages in R and Python for
these three ML approaches (R-package and Python (Sci kit
learn)). Our models achieved a consistently high accuracy rate
in classifying UCNE sequences, with performance typically
above 80% and in some conditions higher than 90% (see be-
low this section). Because the whole genome is 2000 times
larger than the entire UCNE sample, we generated one hun-
dred WGE and uWGE subsets, observing the variability of
approximately 1% (one sigma) between them, indicating sta-
ble performance across different genomic samples. The results
presented for UCNE classification accuracy are average for
WGE and uWGE subsets (not extreme). We optimized the pa- 
rameters of ML for our project. For the SVM, we selected the 
radial kernel, while for RF we used default parameters, as they 
demonstrated excellent performance. The ANN was config- 
ured with the following parameters: a network size of 5 and a 
decay parameter of 0.1. Figure 5 illustrates the Receiver Op- 
erating Characteristic (ROC) values for ML prediction ability 
between UCNE and uWGE. We plotted the ROC curve (Fig- 
ure 5 ) and calculated the Area Under this Curve (AUC). Both 

the SVM and ANN models had an AUC of 0.91, while the RF 

model had an AUC of 0.90. 
Altogether, the classification accuracy for SVM and ANN 

was 83% and for RF - 82%. When instead of unique uWGE 

we used randomly selected genomic fragments from all chro- 
mosomes that frequently contain different types of DNA re- 
peats (WGE datasets), the accuracy decreased slightly (82% 

for SVM, 81% for ANN, and 80% for RF). However, when 

we created WGE datasets from the same chromosome (by 
picking the next WGE sequence by walking 5000 nts down 

the chromosome and so on), accuracy rates for all three ML 

techniques frequently exceeded 90%. This improved perfor- 
mance likely reflects how different chromosomes slightly vary 
from each other by nucleotide composition and are comprised 

of isochores—long DNA segments containing millions of nu- 
cleotides with relatively homogeneous GC content ( 26 ). Fi- 
nally, increasing the length of WGE sequences (let’s say hav- 
ing them all 500 nucleotides long) increases the ML prediction 

ability by a few percentage points. This is attributable to the 
greater number of pattern occurrences in longer DNA frag- 
ments, which redUCNEs the statistical variability and hence 
increases the reliability of our ML-based predictions. 

Overall, our research showed that integrating weak but nu- 
merous signals in dinucleotide arrangements, which are spe- 
cific to UCNEs, allowed us to effectively distinguish these evo- 
lutionarily stable DNA fragments with an impressive accuracy 
of 84%. 

Negligible proportion of 31 046 SNPs inside UCNEs 

in ClinVar database 

To evaluate the effects of genetic variations within UCNEs on 

phenotypic traits, we turned our investigation to the ClinVar 
NCBI database, which contains 2 346 913 human variations 
with reported effects, to determine the presence of UCNE- 
associated SNPs. From the entire set of 31 046 human SNPs 
identified within UCNEs by Fedorova et al. ( 12 ) we sought to 

establish their representation in the ClinVar NCBI database.
This data is cataloged in Table 2 . To contextualize these find- 
ings statistically, we created one hundred random sets of hu- 
man SNPs from the 1000 Genomes Project dataset, with each 

set the same size as our UCNE dataset (31 046 SNPs each). An 

analysis of how these one hundred random SNP datasets over- 
lap with ClinVar is also detailed in Table 2 . The phenotypic 
effects of SNPs are described in the first column of this table 
and were obtained ‘as is’ from the field ‘CLNSIG’ of ClinVar 
VCF dataset. The data in Table 2 reveals that SNPs within UC- 
NEs are not enriched in ClinVar. From our UCNE-related SNP 

investigation, the sole ‘pathogenic’ SNP (rs139649711) we 
identified from Table 2 is located within the FOXP2_Griselda 
UCNE element inside the FOXP2 gene. The FOXP2_Griselda 
UCNE sequence is 412 bp long and overlaps an intron and 

an exon of the FOXP2 gene. The SNP is located at the be- 
ginning of the intron (10th position). Additionally, the sole 
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Figure 5. The receiver Operating Characteristic (ROC) for classification performance for each ML model. 

Table 2. Characterization of SNPs from UCNE and random SNP datasets, 
that are present in ClinVar database 

ClinVar Significance 
categories 

Number of 
instances for 
UCNE SNPs 

Average number 
of instances for 

100 Random SNP 
datasets 

Pathogenic 1 2.1 
Likely_pathogenic 1 1.1 
Conflicting_classifications_ 
of_pathogenicity 

7 14 

Benign 37 64 
Likely_benign 25 48 
Uncertain_significance 17 48 
risk_factor 0 0.07 
drug_response 0 0.01 
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likely-pathogenic’ UCNE SNP (rs374400665) is located in-
ide the leucine-rich pentatricopeptide repeat-containing gene
LRPPRC) within the LRPPRC_Trystan UCNE element that
s also partly intronic and exonic. This SNP is inside the exon
nd is a missense variant. Both aforementioned SNPs are out-
iers, given that the vast majority of UCNE sequences are clas-
ified as non-coding sequences, located in either intergenic re-
ions or introns. The comparatively smaller number of UCNE
NP matches with ClinVar, relative to random SNP subsets,
lign with expectations because SNPs inside UCNEs tend to be
nriched with very rare variants, as previously reported by Fe-
orova and co-authors ( 12 ). Monte Carlo simulations involv-
ng 100 random SNP subsets demonstrated that the frequency
f pathogenic SNPs inside UCNEs found in ClinVar does not
xceed the frequency expected from randomly selected SNPs
rom the entire genome. This finding is statistically significant
ith a P -value of 0.01. 

iscussion 

oes dinucleotide composition of UCNE create 

pecific DNA conformation? 

ecently, our team characterized numerous weak signals
n dinucleotide composition / arrangement within UCNE se-
uences, which set them apart from other sequences in the
human genome as well as computer-generated quasi-random
sequences ( 16 ). The main goal of this paper was to explore
whether dinucleotide non-randomness could be used to pre-
dict UCNEs computationally. The strongest distinguishing
factors of UCNE sequences from the whole genome are the
overabundance of GpC dinucleotides and underabundance
of CpC and GpG dinucleotides. The frequency of these din-
ucleotides alone allows us to differentiate between UCNEs
and WGEs with 74% accuracy. Combining the main promi-
nent signals in UCNE dinucleotide arrangements allows us
to improve the ability to differentiate between UCNEs and
WGEs by up to 84%. This underscores the crucial role of
dinucleotides in the formation of UCNEs. We previously dis-
cussed that dinucleotides are pivotal for the realization of dif-
ferent DNA conformations ( 16 ). A review about ‘sequence-
dependent structural properties of B-DNA’ by Da Rosa and
co-authors ( 27 ) described 16 parameters that affect how nu-
cleotide bases are spatially arranged relative to each other.
These local space variations in bases position / orientation de-
fine multiple DNA conformations and their sub-forms. Svozil
et al. ( 28 ) performed an extensive computational analysis
of all known DNA structures in the Protein Data Bank
(PDB). They studied the distribution of 7739 dinucleotides
inside BI (canonical), BII, and restB (unclassified) conforma-
tions of B-form DNA; AI, AII, restA conformations of A-
form; A / B, and B / A conformations (see Table 8 and Figure
2 of Svozil et al. ( 28 )). According to their findings, speci-
fied in their Table 8 (page 3700), GpC dinucleotides have the
strongest overrepresentation in restB-form and B / A-form and
the strongest underrepresentation in the canonical BI-form.
Conversely, the GpG dinucleotide has very strong preference
to BII-conformation and avoidance of B / A and restB con-
formations. These observations suggest that strong peculiar-
ities of GpC, GpG, and CpC inside UCNEs should cause their
DNA sequences to adopt a specific conformation, which dif-
fer from the canonical BI-form. The ability to change its con-
formations is a pivotal property of DNA. As pointed out by
Pellionisz ( 29 ) about genomic attributes, ‘DNA is an unsu-
pervised operating system’ rather than merely a simple set of
instructions. Therefore, we conjecture that the unique dinu-
cleotide composition of UCNEs is somehow intrinsically re-
lated to their specific DNA conformations. 



8 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How UCNEs may keep their sequences intact for 
hundreds of millions of years 

Numerous studies on the mutational dynamics inside UCNEs
suggest that UCNEs undergo a strong negative (purifying)
selection against mutations to preserve the UCNE sequence
through time ( 4 , 5 , 7 , 30–32 ). This process implies that muta-
tions inside UCNEs tend to produce deleterious alleles. Car-
riers of deleterious alleles have fewer offspring each genera-
tion, leading to a reduced frequency of the mutation within
the gene pool. The inexplicable problem with this scenario
is that the mutations inside UCNEs rarely create observable
phenotypic effects. This raises the question as to how purify-
ing selection could work on every base of a prolonged UCNE
sequence, which can span hundreds of nucleotides long. Even
those who support the functionality of UCNEs as enhancer
elements agree that enhancers are typically much shorter than
UCNEs. Futhermore, not every base within an enhancer is
essential for its function, leading to the expectation of evo-
lutionary non-conservation for certain nucleotides within the
UCNEs (Snetkova et al. ( 11 )). Given the absence of satisfac-
tory explanations for these puzzling properties of UCNEs, we
propose our own hypothesis on this subject. 

Homologous DNA pairing hypothesis 

Scientists have not discovered phenotypic effects for most of
the mutant alleles within UCNE sequences for humans or mice
( 5 , 8 , 33 ). We bioinformatically confirmed this phenomenon as
well by demonstrating that 31 046 mutant alleles inside UC-
NEs are practically not present in the ClinVar database (see
Table 2 ). While obvious phenotypic effects of mutations inside
UCNEs are hard to detect, they may still have significant con-
sequences during specific stages of development, such as ga-
metes. Indeed, mammalian male organisms produce millions
of spermatozoids, each with its own unique set of mutant al-
leles inside the entire pool of UCNEs. Phenotypic variations
between single haploid cells are challenging to observe and
thus, they have not been extensively studied. Furthermore,
there is another enigmatic process associated with gameto-
genesis, initially known as Crick’s unpairing hypothesis ( 34 ).
This process is the conjugation of homologous chromosomes
during meiosis. In a helical DNA duplex, the bases are in-
ward facing. A key question arises: how could inward-facing
bases in one DNA duplex look outwards to recognize ho-
mologous bases in another DNA duplex to start conjugation?
There are several suggestions on how this may occur, investi-
gated by Forsdyke 2007 ( 35 ); Falaschi 2008 ( 36 ); Baldwin et
al. 2008 ( 37 ); Kornyshev and Leikin ( 38 ); Mazur and Glady-
shev ( 39 ), Sen and Gilbert ( 40 ), among others. However, a con-
sensus has yet to be reached. The initial chromosomal conju-
gation is known as recombination-independent homologous
double-stranded dsDNA pairing and was recently thoroughly
reviewed by Mazur and Gladyshev ( 39 ). This process has not
been comprehended yet and controversial opinions on this
subject exist in the literature. One of the problems with mam-
malian dsDNA pairing is that chromosomes are enriched with
thousands of copies of interspersed repetitive elements (e.g.
Alu in humans and B-1 in mice), which could potentially inter-
rupt proper dsDNA-dsDNA homologous pairing. We noticed
that UCNE sequences may be ideal candidates to resolve this
dsDNA pairing predicament. Indeed, UCNE sequences: (i) are
long enough ( > 200 nts) to ensure specific and strong dsDNA–
dsDNA pairing; (ii) have no similarity to each other, so their
homologous interaction would be chromosomal-specific; (iii) 
as we’ve demonstrated, UCNE likely have a specific DNA con- 
formation that we surmise could act as a signal for the ini- 
tiation of homologous dsDNA pairing. Supporting this idea,
Mazur and Gladyshev ( 39 ) recently published their scenario 

for non-recombinant initial pairing of dsDNA homologs. Ac- 
cording to their hypothesis, this process happens via specific 
DNA conformation known as C-form DNA, which is struc- 
turally akin to the B-form but has certain distinguishing fea- 
tures, such as a shallower main groove than B-form. Molecu- 
lar dynamic computations by Mazur ( 41 ) demonstrated that 
dsDNA homologous pairing may be initiated between homol- 
ogous DNA in the C-form conformation without any protein 

assistance (see Figure 2 for details on page 580 of Mazur and 

Gladyshev ( 39 )). These facts allowed us to draw clear paral- 
lels between the Mazur and Gladyshev hypothesis ( 39 ) and 

our investigations of possible DNA conformations of UCNE 

sequences. 
We hypothesize that specific DNA conformation in UCNEs,

like C-form DNA, may initiate dsDNA pairing of homolo- 
gous chromosomes in mammals and other vertebrates. Should 

there be an excessive number of UCNE mutations, they may 
interfere with dsDNA-dsDNA homologous pairing and affect 
meiosis. Thus, purifying selection against non-proper dsDNA 

homologs pairing may be triggered and act against its cell- 
host during meiosis, thereby keeping UCNE sequences ultra- 
conserved over evolutionary timescales. 
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