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Outline

• Discuss the non-randomness of the
human genome in regions between 30
to 10,000 nucleotides.

• Introduce a new algorithm for exon-
intron prediction.



The Human Genome

• You are 23 chromosome pairs, over 3 billion
nucleotides of ATCG, & ~23,000 protein-
coding genes!

• The Human genome sequence allows
biologists to study DNA with computers.

• What do we find in the genome?



It’s got “STUFF.”
• Protein-coding genes.
• Repetitive & transposable elements.
• Functional non-coding RNAs.
• Transcription factor binding sites.
• Splicing enhancers/silencers.
• And much, much more!



Genome ≠ Random.

• Non-randomness is seen in DNA at 3 scales:
– Short  < 30 nucleotides
– Middle 30 to 10,000 nucleotides
– Long 300,000+ base pairs

• Includes inhomogeneous regions, non-uniform
frequency distributions, & mosaic structures.



Bias of Genomic “Words” (short)
• Beyond 5 or 6 nt distance, base choice is essentially

uncorrelated (though coding regions are a special case).

• “Genomic Signatures” (dinucleotide biases) exist in species
(Karlin et al 98).

• Codon structure, we have RNY periodicity (Shepherd 81) and
correlations at multiples of 3 (see Guigó rev).

• “Pyknons” are longers words at unexpected frequencies
(Rigoutsos et al. 2006).



Long-range Mosaic Structure

• The human genome is a mosaic of
“isochores.”

• Isochores have the same G+C
composition down to 300,000 bp
windows.



Figure 2 from Oliver et al. 2002

Human Chromosome 21
Isochore Map



Human Isochore Families

• Isochores divided
by G+C-content.

• H associated with
gene density.

Figure 2.
S Zoubak, O Clay, and G Bernardi. The gene
distribution of the human genome. Gene,
174(1):95-102, 1996 Sep 26.



What happens in the middle?

• The middle-range (30 to 10,000 bp) is
inhomogeneous in terms of sequence
composition.



““Inhomo-genieInhomo-genie”” what? what?

•• Take pizza.Take pizza.
–– SauceSauce
–– PepperoniPepperoni
–– CrustCrust
–– Cheese.Cheese.

•• This is an This is an inhomogeneousinhomogeneous structure. structure.

•• Put pizza in a blender (add water) and you get aPut pizza in a blender (add water) and you get a
homogeneoushomogeneous pizza shake. pizza shake.



Middle-range Inhomogeneity
in the Human Genome



I got a website for that.

• Genomic MRI web-site:
http://bpg.utoledo.edu/gmri/



Graph of Mid-range
Inhomogeneity (GC-rich/poor)

A. large
human
intron

B. random
sequence



But I like the genomic “word”
idea better!

• Human genome has ~3.4 billion base pairs.
• For 16-mers:

– 416 ~ 4.3 billion possible combinations

• Unless some biological feature, expect longer and
longer words to be unique.

• Sequence composition is a fuzzy way to measure
nucleotides bias at the mid-range.



RNA secondary structure

In 2008. Middle-range
inhomogeneity is
associated with predicted
strong, local RNA
secondary structures. Example RNA secondary

structure with a predicted
mfe of -27.2 kcal/mol



• In all human genomic regions: 5'-UTRs, 3'-
UTRs, introns, intergenic regions, coding
sequences

• In many species: human, mouse, cow, dog,
rat, fly, etc.

Mid-range Inhomogeneity
is Everywhere



The Maintenance of MRI

• Can look at MRI regions within the
whole human genome and see what
mutations do to them.



MRI within human populations.

• Mutation is always happening.

• Theoretically, “better ones” (less bad?) get saved.

• Over time some of these changes become fixed in
a population.

• So how many fixed mutations “want to preserve”
middle-range inhomogeneity?



Single Nucleotide Polymorphisms (SNP)



The mutant SNP allele(s) classified according to their
frequency within the human population:

Classifying the Mutant Allele

> 80%Major SNP
20 to 80%Medium SNP
3 to 20%Minor SNP

< 3%Rare SNP



Processing changes in the Human
Genome

• 3.9 million SNPs from dbSNP

• 18.8 million fixed point substitutions
(human-chimp-macaque)

• 6.9 million bp of insertions/deletions



Using “Extremely Easy Math”

• Consider a G+T-rich region is 70% G+T.

• How does that percentage change over time
because of mutations?



Just one example.



Conclusion: Maintenance of
Middle-range Inhomogeneity

• MRI regions have similar levels of new mutations as control
genomic sequences.

• New mutations quickly erode MRI regions by bringing their
nucleotide composition toward genome-average levels.

• Mutations that favor the maintenance of MRI tend to spread
throughout the entire human population.

• Insertions/deletions tend to maintain MRI features but have
a smaller impact than substitutions.



Time to Apply MRI

• Middle-range inhomogeneity is
ubiquitous as well as important to the
genome.

• Can we exploit MRI for the prediction
protein-coding genes?



Markov Chains

• Markov models are the basis for many
gene prediction programs such as
GeneMark.

• We base our approach on Markov
chain algorithms.



Welcome to class!

• Today you will become human Markov
models.

• Markov models can generate & discriminate
sequence data.

• Ready to begin?



Fill in the blank…

i. th
ii. gol
iii. fluff
iv. dinosau

q r t e d u o s f m a y
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Fill in the blank…

i. the
ii. gold
iii. fluffy
iv. dinosaur

q r t e d u o s f m a y



Markov chain fundamentals

• The number of “letters” remembered
by the Markov chain are known as its
order.

• Markov chains can generate the next
letter based on the model frequencies.



Markov chain fundamentals

• Longer words like “dinosaur” were
easier to guess than shorter ones like
“gold” (could have been “golf”).

• Larger order Markov chains generally
do better prediction.



Markov chains for Prediction

• Earlier you became human Markov models
to generate words using your knowledge of
English.

• What if I only gave you a sequence of
characters & wanted to know which
language it was???



Español or English?

tsnottearittheysaidtoon
eanothertetsdecidebylo
twhowillgetitthishappen
edthatthescripturemigh
tbefulfilledthatsaidthey
dividedmyclothesamon
gthemandcastlotsformy
garmentsothisiswhatth
esoldi

idamossedijeronunosa
otrosechemossuertesp
araveraquienletocayasi
lohicieronlossoldadose
stosucedioparaquesec
umplieralaescrituraque
diceserepartieronentre
ellosmimantoysobremir
opaecharonsuer
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tsnottearittheysaidtoon
eanothertetsdecidebylo
twhowillgetitthishappen
edthatthescripturemigh
tbefulfilledthatsaidthey
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Doing Prediction

• Frequent patterns (words) help you see the
language or model classification.

• It’s difficult to make sense of the sentences
without knowing where to start reading.



Help with Reading Frame

tsnottearittheysaidtooneanotherLets
decidebylotwhowillgetitThishappene
dthatthescripturemightbefulfilledthat
saidTheydividedmyclothesamongth
emandcastlotsformygarmentSothisi
swhatthesoldi



Doing Prediction

• Inhomogeneous Markov models can “see”
multiple reading frames.

– Helps detect coding sequences.
– More accurate.

• Homogeneous Markov chains don’t care.



Training for the Unknown

• Suppose you don’t know either language.

• How do you do prediction without learning
the meaning of every word in each
language?

...beschlossensiediesesuntergewandwollen…



Training a Model

• You’d read lots of
books in each
language & learn
the frequent words!



Training Markov chains

• Our algorithm gets to read 12 million
nucleotides of exons and introns each.

• 3 million are used to test prediction.



Training Markov chains

• Our tests based on whole intron and exon
sequences.

• 72,000 training & 18,000 test EXONS.

• 2,500 training & 600 test INTRONs.



Moving toward a new
Approach

• Remember that longer and longer
words will be unique.

• We’ve been using short “words” for
prediction, but the mid-range patterns
are also non-random!



Enter: Binary-abstracted
Markov models

• Mid-range nucleotide sequences need
more “books” of information than the
human genome can provide.

• We reduce sequence information to
do mid-range Markov model analysis.



Abstraction is Sometimes
Good Enough

• Why do we say “doctors make good money”
instead of “orthopedic surgeons earn
significantly above the mean wage”?

• Why would I say “I go to school” when I go
to the “University of Toledo: Health Science
Campus”?



Our Abstraction Process for
Nucleotide Sequences

“G” or not “G”, that is the question:
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Our Abstraction Process for
Nucleotide Sequences

“G” or not “G”, that is the question:



Abstraction Rule

• Abstraction rules indicate how to
reduce nucleotide information into a
binary code.

• Abstraction rules depend on the
nucleotide word length.



Nucleotides Words of Length 3

*G+C means “G or C”



How many ways can I reduce
nucleotide information?

1.16 x 10772564
1.84 x 1019643

65,536162
1641

# Abstraction Rules# WordsWord
Length



How do I get the best
abstraction rules?

• Abstraction lengths of 1 & 2 are okay.

• For 3 & 4, need MORE POWER!



The Ohio Supercomputer
Center & the Glenn Cluster

• 4,212 Opteron CPUs.

• 75 trillion floating point
operations per second.

• We typically used only 512
computer cores.



Optimization of Abstraction
Rules for “4-mers”

• Tested over 324 million 4-mer
abstraction rules.

• Took about 11 days of
supercomputer time in total.

• Would have taken over 3 and half
years on a single core desktop
computer.



The best individual results.

92%80%Length 4
93%77%Length 3
88%75%Length 2
79%77%Length 1

Intron
Accuracy

Exon
Accuracy

Best Abstraction
Rule for Words:

*Accuracy is the percentage of correct predictions.



Other Ideas

• Abstraction rules based on frame.

• Abstraction rules based on repetitive
sequences.

• Abstraction rules based on splicing signals.



Machine-learning to Optimize
Prediction

• Support Vector Machines can learn to draw
better boundary lines between two classes
of data.

• Multiple binary-abstracted Markov model
predictions can be used as input.



Support Vector Machines

From www.dtreg.com/svm.htm



Support Vector Machines

From www.dtreg.com/svm.htm

Non-linear
division
boundary.



Over & under fitting.

From www.dtreg.com/svm.htm



Model Optimization

Original Values SVM Optimized Values
Abstraction Rule Exon Acc. Intron Acc. M-value Exon Acc. Intron Acc. M-value
Markov Model 6 89% 83% 0.854 94% 80% 0.855
G-map (BA1) 77% 79% 0.779 94% 72% 0.801
BA2 Best 75% 88% 0.806 94% 81% 0.860
BA3 Best 77% 93% 0.831 94% 86% 0.893
BA4 Best 80% 92% 0.849 95% 84% 0.883
A priori 3 76% 69% 0.726 93% 75% 0.817
SP Top 24 Pos 73% 86% 0.782 94% 76% 0.822
GT-rich 65% 83% 0.725 94% 70% 0.781
Duplication 77% 86% 0.807 95% 76% 0.829
Purine-pyrimidine 79% 65% 0.707 93% 69% 0.777

*M-value combines the total accuracy of predictions.



Optimization Consequence

• Lose fewer points of intron accuracy to
gain many points of exon accuracy.

• Exon accuracy emphasis may be due
to the variation in the prediction data.



Zoomed Histogram of Prediction Scores

• Exons blue;
Introns red.

• Only scores
for -10 to
+10 shown.

• Best
abstraction
rule for
triplets.



Zoomed Histogram of Prediction Scores

• Exons blue;
Introns red.

• Overlap of
introns around
the mean
histogram
scores for
exons.

• Intron mean
further out.



Zoomed Plot of 2 Models

• Exons blue;
Introns red.

• Best abstraction
rule for 4-mers
versus 3-mers.



Combining Different Models

• From 10 different abstraction rules/models
we chose combinations of 1, 2, 3, etc. (K)

• Found best combination for each group that
differed no more than M = 0.003 between
the test & validation sets.



Model Combination Results
• High accuracy

for K models > 2.

• Little accuracy
difference
between test &
validation sets.



Model Combination Results
• K = 5 models

about 95%
accurate!

• Over-fitting due
to abstraction
rules not large.



Not just for Coding Exons

• Untranslated regions (UTR) are also
spliced, especially in the 5-prime UTR.

• Can we train on coding sequences
and predict 5-prime UTR exons?



Jensen-Shannon Divergence

• Divergence measures the difference in
the 5-mer frequency distributions.



Jensen-Shannon Divergence

• 5-prime UTR Exons extremely
different from introns.



5-prime UTR Exon
Classification

•Trained with
coding exons &
introns.

•Tested on 5-prime
UTR exons and
introns.



5-prime UTR Exon
Classification

•Abstraction rules
based on
nucleotide
richness.

•Abstraction rules
based on splicing
signals.



Observations with UTR
Classification

• 3-prime UTRs are difficult to predict based on composition.

• 5-prime UTR data may be too small to use for training.

• Accuracy under SVM was 87% exon accuracy and 91%
intron accuracy for 4 models (BA1, BA2, BA3, SP).



Summary of Achievements
• Described how mid-range genomic signals are maintained in the human

genome.

• Introduced and tested a new algorithm for genomic sequence
classification.

• Optimized the method using supercomputer & machine-learning
technology.

• Achieved better results than the traditional homogeneous Markov model.

• Adapted our approach for 5-prime UTR data.



Final Remarks

• Not a sequence parse, but can further
develop for a full gene-finding program.

• May be able to utilize abstraction
methodology for other classification:
alternative splicing, nucleosome filing
positions, etc.



Thank you for your attention.

Questions? 问题?

¿Preguntas? Fragen?

вопросы? 質問か。
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